Nitroxide-mediated polymerization of styrene-divinylbenzene has been modeled using generating functions of length distributions, pseudo-kinetic propagations, and numerical fractionation with the crosslinking rate depending on generation. Cyclization reactions are tackled by balances of sequences, yielding fair predictions of the measured pendant double bond concentration. With reduction in crosslinking, agreement for the experiments at 90 8C between predicted and measured weight-average, molecular weight, and weight fraction of gel is observed. A much higher relative crosslinking reactivity is observed at 130 8C as compared to 90 8C, likely an effect of the chain mobility.
A kinetic model including the cyclic propagation (cyclization) is proposed for the nitroxidemediated radical copolymerization of styrene-divinylbenzene. The method involves a balance of sequences of units, which connect a radical center and a pendant double bond present in the same polymer chain. The rate constant for cyclization was considered a function of the sequence length. Good agreement between the model predictions and experimental data for solution and suspension controlled copolymerizations was found. The rate constant of cyclization for the smallest ring (3 monomeric units) was estimated to be 700 s À1 at 90 8C, and the activation energy was estimated to be 32 500 cal mol À1 .
Summary: Experimental and theoretical studies concerning the suspension copolymerization of styrene with divinylbenzene are reported. Experiments were carried out in a batch stirred reactor, at 1.2 dm3 scale, and extended beyond gelation in order to synthesize insoluble material. Looking for real time information concerning the building process of such materials, these polymerizations were In‐line monitored using a FTIR‐ATR immersion probe. Polymer samples collected before and after gelation were Off‐line characterized using a SEC/RI/MALLS system allowing the measurement of monomer conversion, average molecular weights, MWD and also the z‐average radius of gyration. The weight fraction of insoluble material (gel) was measured for samples with different reaction times. The experimental program has included the study of the influence of key polymerization parameters on the dynamics of gelation and some properties of the resulting networks, namely the initial mole fraction of crosslinker and the initial proportions between monomers and inert diluent. Variable n‐heptane/toluene mixtures were used within this purpose. These experimental observations were complemented with theoretical studies using a general kinetic approach allowing the prediction of MWD and z‐average radius of gyration before and also after gelation. Comparison of the experimental measurements with these predictions is being exploited to develop modeling tools useful for the design of operating conditions allowing the improvement of the performance of the final products.
Valorization of industrial low-value side-streams are of great interest, contributing to boosts in the circular economy. In this context, lignin side-streams of the pulp and paper industry were oxypropylated to produce biobased polyols and tested in the synthesis of rigid polyurethane (RPU) foams. E. globulus lignins, namely a lignin isolated from an industrial Kraft black liquor and depolymerized lignins obtained as by-products of an oxidation process, were used. RPU foams, synthesized with 100% lignin-based polyols and using a 1.1 NCO/OH ratio, were characterized concerning apparent density, morphology, thermal conductivity, thermal stability, and heat release rate (HRR). Foams containing the lignin-based polyols presented densities varying from 44.7 to 112.2 kg/m3 and thermal conductivity in the range of 37.2–49.0 mW/mK. For the reference foam (sample produced with 100% wt. Daltofoam TP 32015 polyol), values of 70.9 kg/m3 and 41.1 mW/mK were obtained, respectively. The achieved results point out the viability of using the generated lignin-based polyols at 100% content in RPU foams, mainly when depolymerized lignins are used. Moreover, fire retardancy was favored when the lignin-based polyols were introduced. The proposed strategies can contribute to establishing the integrated pulp and paper biorefinery concept where material synthesis (polyols and RPU foams) can be combined with chemical production (vanillin and syringaldehyde).
Summary: Temperature and pH stimuli-responsive hydrogel particles were synthesized using inverse-suspension polymerization in batch stirred reactor. Different water soluble co-monomers were present in the initial mixture (e.g. N-isopropylacrylamide and acrylic acid) as well as crosslinkers with different functionalities. Different operating conditions such as polymerization temperature, monomers dilution, neutralization and the initial ratios of co-monomers and monomers/crosslinker were also tried. Hydrogel particles were produced considering classical free-radical polymerization (FRP) and also RAFT polymerization. Commercially available RAFT agents 4-cyano-4-phenylcarbonothioylthio-pentanoic acid (CPA), 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and cyanomethyl dodecyl trithiocarbonate (CDT) were alternatively used. Sampling at different polymerization times allowed the study of the kinetics of polymerization through the analysis by SEC of the soluble phase. A tetra-detector array with simultaneous detection of refractive index, light scattering, intrinsic viscosity and ultra-violet signals was used in these studies. Usefulness of in-line FTIR-ATR monitoring to study the building process of such networks was also assessed. The performance of hydrogel beads was studied through drug delivery tests triggered by changes in the environmental temperature and pH. This research aims to contribute for the elucidation of the connection between the synthesis conditions, molecular architecture and properties/performance of such advanced materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.