The approval of immunotherapeutic agents and immunotherapy-based combination strategies in recent years has revolutionized the treatment of patients with advanced renal cell carcinoma (aRCC). Nivolumab, a programmed death 1 (PD-1) immune checkpoint inhibitor monoclonal antibody, was approved as monotherapy in 2015 for aRCC after treatment with a VEGF-targeting agent. In April 2018, the combination of nivolumab and ipilimumab, a CTLA-4 inhibitor, was approved for intermediate- and poor-risk, previously untreated patients with aRCC. Then, in 2019, combinations therapies consisting of pembrolizumab (anti-PD-1) or avelumab (anti-PD-ligand (L) 1) with axitinib (a VEGF receptor tyrosine kinase inhibitor) were also approved to treat aRCC and are likely to produce dramatic shifts in the therapeutic landscape. To address the rapid advances in immunotherapy options for patients with aRCC, the Society for Immunotherapy of Cancer (SITC) reconvened its Cancer Immunotherapy Guidelines (CIG) Renal Cell Carcinoma Subcommittee and tasked it with generating updated consensus recommendations for the treatment of patients with this disease.
Purpose: High-dose recombinant human interleukin-2 (IL-2) therapy is of clinical benefit in a subset of patients with advanced melanoma and renal cell cancer. Although IL-2 is well known as aT-cell growth factor, its potential in vivo effects on human immunoregulatory cell subsets are largely unexplored. Experimental Design: Here, we studied the effects of high-dose IL-2 therapy on circulating dendritic cell subsets (DC), CD1d-reactive invariant natural killerT cells (iNKT), and CD4 + CD25 + regulatory-typeTcells. Results: The frequency of both circulating myeloid DC1and plasmacytoid DC decreased during high-dose IL-2 treatment. Of these, only a significant fraction of myeloid DC expressed CD1d. Although the proportion of Th1-type CD4À iNKT increased, similarly to DC subsets, the total frequency of iNKT decreased during high-dose IL-2 treatment. In contrast, the frequency of CD4 + CD25 + T cells, including CD4 + Foxp3 + T cells, which have been reported to suppress antitumor immune responses, increased during high-dose IL-2 therapy. However, there was little, if any, change of expression of GITR, CD30, or CTLA-4 on CD4 + CD25 + T cells in response to IL-2. Functionally, patient CD25 + T cells at their peak level (immediately after the first cycle of high-dose IL-2) were less suppressive than healthy donor CD25 + Tcells and mostly failed toTh2 polarize iNKT. Conclusions: Our data show that there are reciprocal quantitative and qualitative alterations of immunoregulatory cell subsets with opposing functions during treatment with high-dose IL-2, some of which may compromise the establishment of effective antitumor immune responses.
In recent years oral mucosal injury has been increasingly recognized as an important toxicity associated with mammalian target of rapamycin (mTOR) inhibitors, including in patients with breast cancer who are receiving everolimus. This review addresses the state‐of‐the‐science regarding mTOR inhibitor‐associated stomatitis (mIAS), and delineates its clinical characteristics and management. Given the clinically impactful pain associated with mIAS, this review also specifically highlights new research focusing on the study of the molecular basis of pain. The incidence of mIAS varies widely (2–78%). As reported across multiple mTOR inhibitor clinical trials, grade 3/4 toxicity occurs in up to 9% of patients. Managing mTOR‐associated oral lesions with topical oral, intralesional, and/or systemic steroids can be beneficial, in contrast to the lack of evidence supporting steroid treatment of oral mucositis caused by high‐dose chemotherapy or radiation. However, steroid management is not uniformly efficacious in all patients receiving mTOR inhibitors. Furthermore, technology does not presently exist to permit clinicians to predict a priori which of their patients will develop these lesions. There thus remains a strategic need to define the pathobiology of mIAS, the molecular basis of pain, and risk prediction relative to development of the clinical lesion. This knowledge could lead to novel future interventions designed to more effectively prevent mIAS and improve pain management if clinically significant mIAS lesions develop.
Immunotherapy has produced durable clinical benefit in patients with metastatic renal cell cancer (RCC). In the past, patients treated with interferon-alpha (IFN) and interleukin-2 (IL-2) have achieved complete responses, many of which have lasted for multiple decades. More recently, a large number of new agents have been approved for RCC, several of which attack tumor angiogenesis by inhibiting vascular endothelial growth factors (VEGF) and VEGF receptors (VEGFR), as well as tumor metabolism, inhibiting the mammalian target of rapamycin (mTOR). Additionally, a new class of immunotherapy agents, immune checkpoint inhibitors, is emerging and will play a significant role in the treatment of patients with RCC. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a Task Force, which met to consider the current role of approved immunotherapy agents in RCC, to provide guidance to practicing clinicians by developing consensus recommendations and to set the stage for future immunotherapeutic developments in RCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s40425-016-0180-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.