In the context of discrete-time switched systems, we study the comparison of stability certificates based on path-complete Lyapunov methods. A characterization of this general ordering has been provided recently, but we show here that this characterization is too strong when a particular template is considered, as it is the case in practice. In the present work we provide a characterization for templates that are closed under pointwise minimum/maximum, which covers several templates that are often used in practice. We use an approach based on abstract operations on graphs, called lifts, to highlight the dependence of the ordering with respect to the analytical properties of the template. We finally provide more preliminary results on another family of templates: those that are closed under addition, as for instance the set of quadratic functions.
CCS CONCEPTS• Theory of computation → Mathematical optimization; • Mathematics of computing → Graph theory.
This paper investigates, in the context of discrete-time switching systems, the problem of comparison for path-complete stability certificates. We introduce and study abstract operations on path-complete graphs, called lifts, which allow us to recover previous results in a general framework. Moreover, this approach highlights the existing relations between the analytical properties of the chosen set of candidate Lyapunov functions (the template) and the admissibility of certain lifts. This provides a new methodology for the characterization of the order relation of path-complete Lyapunov functions criteria, when a particular template is chosen. We apply our results to specific templates, notably the sets of primal and dual copositive norms, providing new stability certificates for positive switching systems. These tools are finally illustrated with the aim of numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.