Summary
In the thymus, high affinity, self-reactive thymocytes are eliminated from the pool of developing T cells, generating central tolerance. Here, we investigate how developing T cells measure self-antigen affinity. We show that very few CD4 or CD8 coreceptor molecules are coupled with the signal-initiating kinase, Lck. To initiate signaling, an antigen engaged T cell receptor (TCR) scans multiple coreceptor molecules to find one that is coupled to Lck. Coreceptor scanning is the first and rate-limiting step in a kinetic proofreading chain of events that eventually leads to TCR triggering and negative selection. MHCII-restricted TCRs require a shorter antigen dwell time (~0.2s) to initiate negative selection compared to MHCI restricted TCRs (~0.9s) because more CD4 coreceptors are Lck-loaded compared to CD8. Based on experimental data and mathematical analysis, we generated a model (Lck come&stay/signal duration) that accurately predicts the experimentally observed differences in antigen dwell-time thresholds used by MHCI- and MHCII-restricted thymocytes to initiate negative selection and generate self-tolerance.
Enzymes of grasses involved in fructan synthesis are of interest since they play a major role in assimilate partitioning and allocation, for instance in the leaf growth zone. Several fructosyltransferases from tall fescue (Festuca arundinacea) have previously been purified (Lüscher and Nelson, 1995). It is surprising that all of these enzyme preparations appeared to act both as sucrose (Suc):Suc 1-fructosyl transferases (1-SST) and as fructan:fructan 6G-fructosyl transferases. Here we report the cloning of a cDNA corresponding to the predominant protein in one of the fructosyl transferase preparations, its transient expression in tobacco protoplasts, and its functional analysis in the methylotrophic yeast,Pichia pastoris. When the cDNA was transiently expressed in tobacco protoplasts, the corresponding enzyme preparations produced 1-kestose from Suc, showing that the cDNA encodes a 1-SST. When the cDNA was expressed in P. pastoris, the recombinant protein had all the properties of known 1-SSTs, namely 1-kestose production, moderate nystose production, lack of 6-kestose production, and fructan exohydrolase activity with 1-kestose as the substrate. The physical properties were similar to those of the previously purified enzyme, except for its apparent lack of fructan:fructan 6G-fructosyl transferase activity. The expression pattern of the corresponding mRNA was studied in different zones of the growing leaves, and it was shown that transcript levels matched the 1-SST activity and fructan content.
Summary• Previously we have cloned sucrose: fructan-6-fructosyltransferase (6-SFT) from barley ( Hordeum vulgare ) and proposed that synthesis of fructans in grasses depends on the concerted action of two main enzymes: sucrose: sucrose-1-fructosyltransferase (1-SST), as in other fructan producing plants, and 6-SFT, found only in grasses.• Here we report the cloning of barley 1-SST, verifying the activity of the encoded protein by expression in Pichia pastoris . As expected, the barley 1-SST is homologous to invertases and fructosyltransferases, and in particular to barley 6-SFT.• The gene expression pattern of 1-SST and 6-SFT, along with the corresponding enzyme activities and fructan levels, were investigated in excised barley leaves subjected to a light-dark regime known to sequentially induce fructan accumulation and mobilization. The turnover of transcripts and enzyme activities of 1-SST and 6-SFT was compared, using appropriate inhibitors.• We found the 1-SST transcripts and enzymatic activity respond quickly, being subject to a rapid turnover. By contrast, the 6-SFT transcripts and enzymatic activity were found to be much more stable. The much higher responsiveness of 1-SST to regulatory processes, as compared with 6-SFT, clearly indicates that 1-SST plays the role of the pacemaker enzyme of fructan synthesis in barley leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.