We report the design, synthesis, and evaluation of rigid oligonaphthalenediimide (O-NDI) rods that are expected to act as transmembrane anion-pi slides. Studies in fluorogenic large unilamellar egg yolk phosphatidylcholine vesicles reveal that rigid O-NDI rods mediate anion-selective transport with a rare halide VI selectivity sequence (Cl- > F- > Br- > I-). This and decreasing activity, selectivity, and halide sequence with increasing positive charge of the rod termini support the occurrence of anion-pi interactions. A strong anomalous mole fraction effect in Cl-/I- mixtures is in agreement with the existence of multiple active sites along the anion-pi slide and multi-anion hopping as a mechanism of transport. The strong inverted NDI quadruple moment found by DFT calculations is in excellent agreement with these results.
Shape-persistent oligo-p-phenylene-N,N-naphthalenediimide (O-NDI) rods are introduced as anion-pi slides for chloride-selective multiion hopping across lipid bilayers. Results from end-group engineering and covalent capture as O-NDI hairpins suggested that self-assembly into transmembrane O-NDI bundles is essential for activity. A halide topology VI (Cl > F > Br approximately I, Cl/Br approximately Cl/I > 7) implied strong anion binding along the anion-pi slides with relatively weak contributions from size exclusion (F >or= OAc). Anomalous mole fraction effects (AMFE) supported the occurrence of multiion hopping along the pi-acidic O-NDI rods. The existence of anion-pi interactions was corroborated by high-level ab initio and DFT calculations. The latter revealed positive NDI quadrupole moments far beyond the hexafluorobenzene standard. Computational studies further suggested that anion binding occurs at the confined, pi-acidic edges of the sticky NDI surface and is influenced by the nature of the phenyl spacer between two NDIs. With regard to methods development, a detailed analysis of the detection of ion selectivity with the HPTS assay including AMFE in vesicles is provided.
Slide rules: A new class of membrane‐active rigid‐rod molecules comprising π‐acidic, n‐semiconducting oligoperylenediimides is introduced (see picture). They are able to combine passive anion transport across lipid bilayers with photoactive electron transport in the other direction across intact vesicle membranes. Thus, the compounds demonstrate artificial photosynthetic activity.
Design, synthesis, and multifunctionality of p-octiphenyl beta-barrel pores with external LRL triads and internal HH dyads are described. Molecular recognition of anionic fullerenes > calixarenes > pyrenes by guanidinium arrays at the outer pore surface is shown to result in pore opening, whereas alpha-helix recognition within the topologically matching internal space is shown to result in noncompetitive pore blockage. This experimental evidence for multifunctionality is supported by comparison with pertinent control pores and blockers, by structural studies using FRET from p-octiphenyl donors in the pore to BODIPY acceptors in the bilayer, and by molecular mechanics simulations. Practical usefulness of ligand-gated synthetic multifunctional pores is exemplified with the continuous detection of chemical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.