This paper presents kinetic and structural analyses of oligosaccharide material released during glycosylation in permeabilized Chinese hamster ovary cells incubated with sugar nucleotides. Permeabilized cells released 30 times more oligosaccharide material than metabolically labelled cells, normalized to the amount of labelled glycoprotein acceptor, making this an amenable system for study. Fifteen to forty per cent of the oligosaccharide material released by permeabilized cells was oligosaccharide-phosphate, depending on the nature and amount of the oligosaccharide-lipids synthesized. The oligosaccharide-phosphates released were recovered in the cytosol, and were exclusively Man2Glc-NAc2P and Man5GlcNAc2P, released from oligosaccharide-lipids thought to be facing the cytosol. In contrast, the structures found as neutral oligosaccharide material were similar to those attached to newly synthesized glycoproteins, indicating that the oligosaccharides were subjected to the same processing enzymes whether or not they were protein bound. Importantly, the kinetics of the transfer to protein and the release of free neutral oligosaccharide were parallel, suggesting that the same enzyme was responsible for both processes. Structural analyses demonstrated that the same Man5GlcNAc2 structure was transferred to protein and released as free oligosaccharide. Neutral oligosaccharides were found in both the cytosol and the pellet; however, oligosaccharides with one GlcNAc residue at the reducing end (OS-Gn1) were found exclusively in the supernate. The major neutral oligosaccharide produced after 2 h of metabolic labelling was Man5GlcNAc and it was found in the cytosol.
We have previously reported the substrate specificity of the cytosolic alpha-D-mannosidase purified from rat liver using Man9GlcNAc, i.e. Man alpha 1-2Man alpha 1-3(Man alpha 1-2Man alpha 1-6)Man alpha 1-6(Man alpha 1-2Man alpha 1-2Man alpha 1-3) Man beta 1-4G1cNAc, as substrate [Grard, Saint-Pol, Haeuw, Alonso, Wieruszeski, Strecker and Michalski (1994) Eur. J. Biochem. 223, 99-106]. Man9 G1cNAc is hydrolysed giving Man5GlcNAc, i.e. Man alpha 1-2 Man alpha 1-2Man alpha 1-3(Man alpha 1-6)Man beta 1-4GlcNAc, possessing the same structure as the oligosaccharide of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. We study here the activity of the purified cytosolic alpha-D-mannosidase towards the oligosaccharide-diphosphodolichol intermediates formed during the biosynthesis of N-glycans, and also towards soluble oligosaccharides released from the endoplasmic reticulum which are glucosylated or not and possessing at their reducing end either a single N-acetylglucosamine residue or a di-N-acetylchitobiose sequence. We demonstrate that (1) dolichol pyrophosphate oligosaccharide substrates are poorly hydrolysed by the cytosolic alpha-D-mannosidase; (2) oligosaccharides with a terminal reducing di-N-acetylchitobiose sequence are not hydrolysed at all; (3) soluble oligosaccharides bearing a single reducing N-acetylglucosamine are the real substrates for the enzyme. These results suggest a role for alpha-D-mannosidase in the catabolism of glycans released from the endoplasmic reticulum rather than in the regulation of the biosynthesis of asparagine-linked oligosaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.