No abstract
This paper presents an approach to the evaluation of reservoir models using transient pressure data. Braided fluvial sandstones exposed in cliffs in SW England were studied as the surface equivalent of the Triassic Sherwood Sandstone, a reservoir unit at the nearby Wytch Farm oilfield. Three reservoir models were built; each used a different modelling approach ranging in complexity from stochastic pixel-based modelling using commercially available software, to a spreadsheet random number generator. In order to test these models, numerical well test simulations were conducted using sector models extracted from the geological models constructed. The simulation results were then evaluated against the actual well test data in order to find the model which best represented the field geology.Two wells at Wytch Farm field were studied. The results suggested that for one of the sampled wells, the model built using the spreadsheet random number generator gave the best match to the well test data. In the well, the permeability from the test interpretation matched the geometric average permeability. This average is the "correct" upscaled permeability for a random system, and this was consistent with the random nature of the geological model. For the second well investigated, a more complex "channel object" model appeared to fit the dynamic data better.All the models were built with stationary properties. However, the well test data suggested that some parts of the field have different statistical properties and hence show non-stationarity. These differences would have to be built into the model representing the local geology.This study presents a workflow that is not yet considered standard in the oil industry, and the use of dynamic data to evaluate geological models requires further development. The study highlights the fact that the comparison or matching of results from reservoir models and well-test analyses is not always straightforward in that different models may match different wells. The study emphasises the need for integrated analyses of geological and engineering data. The methods and procedures presented are intended to form a feedback loop which can be used to evaluate the representivity of a geological model.
Composite distributed services involve local and remote services that get orchestrated according to specific business logic. This logic can be programmed by applying a traditional general-purpose programming language, but is generally described using a workflow language that coordinates a set of given services. The services involved in the composition, or the composition may need to evolve both at the business logic level (workflow level) and the global architecture level. This paper presents a solution to ease such evolution for compound distributed services and the authors’ proposal enables the evolution of both the business logic and the underlying architecture. This paper suggests relying on a distributed software component model to represent and easily manage the set of local or remote software entities (services) involved in the composition. Composite services are represented in a model that combines the use of a distributed and hierarchical software component model and new timed-automata based workflow language. This combination makes explicit the separation between functional and non-functional concerns, and as a consequence this approach helps in defining the required and various evolution procedures in context to compound services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.