Retinoid X receptors (RXR␣, -, and -␥) occupy a central position in the nuclear receptor superfamily, because they form heterodimers with many other family members and hence are involved in the control of a variety of (patho)physiologic processes. Selective RXR ligands, referred to as rexinoids, are already used or are being developed for cancer therapy and have promise for the treatment of metabolic diseases. However, important side effects remain associated with existing rexinoids. Here we describe the rational design and functional characterization of a spectrum of RXR modulators ranging from partial to pure antagonists and demonstrate their utility as tools to probe the implication of RXRs in cell biological phenomena. One of these ligands renders RXR activity particularly sensitive to coactivator levels and has the potential to act as a cell-specific RXR modulator. A combination of crystallographic and fluorescence anisotropy studies reveals the molecular details accounting for the agonist-to-antagonist transition and provides direct experimental evidence for a correlation between the pharmacological activity of a ligand and its impact on the structural dynamics of the activation helix H12. Using RXR and its cognate ligands as a model system, our correlative analysis of 3D structures and dynamic data provides an original view on ligand actions and enables the establishment of mechanistic concepts, which will aid in the development of selective nuclear receptor modulators.crystal structure ͉ ligand design ͉ nuclear receptor ͉ agonist ͉ antagonist N uclear Receptor (NR)-controlled gene expression relies on a mechanism in which NRs recruit coregulators that are part of multiprotein complexes. These complexes correspond to chromatin-modifying and transcription-initiating machineries that act at target gene promoters in a precisely timed and sequential fashion (1). The binding of a ligand to the ligandbinding domain (LBD) of NRs constitutes the initial step of this regulatory process. In this context, the C-terminal helix H12 of LBDs plays a key role, because its position, which depends on the bound ligand, determines the type of coregulator recruited by the receptor (2). Structural studies have shown that in agonistbound NR LBDs, H12 adopts the so-called ''active'' or ''holo'' conformation and provides a binding surface for short NR interaction motifs of coactivators (3). In contrast, antagonists prevent H12 from adopting the holo position (4).Therapeutically, retinoid X receptor (RXR)-selective ligands, referred to as rexinoids, are used in cancer therapy, and previously uncharacterized rexinoid-based therapeutic paradigms are currently being explored. In addition, rexinoids have promise for use in the therapy of metabolic diseases (5, 6), but important side effects associated with existing compounds limit their use. Improved understanding of the biological role and the structural biology of RXR (7, 8) will allow the synthesis of selective modulators that might overcome the limitations of current drugs. Here,...
Steroids are implicated in many physiological processes, such as reproduction, aging, metabolism, and cancer. To understand the molecular basis for steroid recognition and discrimination, we studied the human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) responsible for the last step in the bioactivation of all estrogens. Here we report the first observation of the conversion of dihydrotestosterone (DHT) into 3beta,17beta-androstanediol (3beta-diol) by 17beta-HSD1, an estrogenic enzyme studied for more than half a century. Kinetic observations demonstrate that both the 3beta-reduction of DHT into 3beta-diol (kcat = 0.040 s(-1)1; Km = 32 +/- 9 microM) and the 17beta-oxidation of DHT into androstandione (A-dione) (kcat = 0.19 s(-1); Km = 26 +/-6 microM) are catalyzed by 17beta-HSD1 via alternative binding orientation of the steroid. The reduction of DHT was also observed in intact cells by using HEK-293 cells stably transformed with 17beta-HSD1. The high-resolution structure of a 17beta-HSD1-C19-steroid (testosterone) complex solved at 1.54 A demonstrates that the steroid is reversibly oriented in the active site, which strongly supports the existence of alternative binding mode. Such a phenomenon can be explained by the pseudo-symmetric structure of C19-steroids. Our results confirm the role of the Leu149 residue in C18/C19-steroid discrimination and suggest a possible mechanism of 17beta-HSD1 in the modulation of DHT levels in tissues, such as the breast, where both the enzyme and DHT are present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.