The crystal structure of the ligand binding domain (LBD) of the estrogen-related receptor ␣ (ERR␣, NR3B1) complexed with a coactivator peptide from peroxisome proliferator-activated receptor coactivator-1␣ (PGC-1␣) reveals a transcriptionally active conformation in the absence of a ligand. This is the first x-ray structure of ERR␣ LBD, solved to a resolution of 2.5 Å, and the first structure of a PGC-1␣ complex. The putative ligand binding pocket (LBP) of ERR␣ is almost completely occupied by side chains, in particular with the bulky side chain of Phe 328 (corresponding to Ala 272 in ERR␥ and Ala 350 in estrogen receptor ␣). Therefore, a ligand of a size equivalent to more than ϳ4 carbon atoms could only bind in the LBP, if ERR␣ would undergo a major conformational change (in particular the ligand would displace H12 from its agonist position). The x-ray structure thus provides strong evidence for ligand-independent transcriptional activation by ERR␣. The interactions of PGC-1␣ with ERR␣ also reveal for the first time the atomic details of how a coactivator peptide containing an inverted LXXLL motif (namely a LLXYL motif) binds to a LBD. In addition, we show that a PGC-1␣ peptide containing this nuclear box motif from the L3 site binds ERR␣ LBD with a higher affinity than a peptide containing a steroid receptor coactivator-1 motif and that the affinity is further enhanced when all three leucine-rich regions of PGC-1␣ are present.Nuclear hormone receptors (NRs) 1 are transcription factors that control essential developmental and physiological pathways (1). Although the transcriptional activity of NRs is often regulated by specific ligands, several members of the superfamily have no known natural ligands and are therefore referred to as orphan NRs (2). Estrogen-related receptor ␣ (ERR␣; NR3B1) was the first orphan NR to be identified on the basis of its similarity with estrogen receptor ␣ (ER␣; NR3A1) (3). ERR␣ and its relatives ERR (NR3B2) and ERR␥ (NR3B3) form a small family of orphan NRs that are evolutionarily related to the estrogen receptors ER␣ and ER. ERRs preferentially bind to DNA sites composed of a single half-site preceded by three nucleotides with the consensus sequence TNAAGGTCA, referred to as an ERR response element. It has been shown that ERR␣ also efficiently binds to estrogen response elements and that these receptors share common target genes (4). This observation was further supported by studies demonstrating cross-talk between the ER and ERR pathways (reviewed in Ref. 5). The most striking feature observed in the phenotype of mice lacking ERR␣ is their resistance to high fat diet-induced obesity and the impaired activity of enzymes implicated in lipid metabolism. This finding led to the hypothesis that ERR␣ could be implicated in obesity or metabolic diseases (6). A function of ERR␣ on bone metabolism has also been suggested (7,8). Finally, recent publications show that ERR␣ and ERR␥ are associated with biomarkers of breast cancer and further emphasize the importance of ER-ERR cross-talk (9...
Dual endosymbioses involving methane- and sulphur-oxidizing bacteria occur in the gills of several species of mussels from deep-sea hydrothermal vents and cold seeps. Variations of total and relative abundances of symbionts depending on local environmental parameters are not yet understood, due to a lack of reliable quantification of bacteria in the host tissue. Here, we report the first attempt to quantify volumes occupied by each type of symbiont in bacteriocyte sections from a vent mussel, Bathymodiolus azoricus, using fluorescence in situ hybridization (FISH) coupled to three dimentional microscopy and image analysis carried out by a dedicated software, which we developed. Bacteriocytes from mussels recovered at different vent sites displayed significantly different abundances of bacteria. Specimens kept in aquaria at atmospheric pressure and exposed to an artificial pulse of sulphur displayed an increase in absolute and relative abundance of sulphur oxidizers within their bacteriocytes. Distributions of all measured parameters fitted normal distributions, indicating that bacteriocytes from a specimen tend to display similar behaviours. This study shows that symbiont volume quantification is tractable using 3D FISH, and confirms the impact of local environmental parameters on symbiont abundances.
The vertical flux of marine snow particles significantly reduces atmospheric carbon dioxide concentration. In the mesopelagic zone, a large proportion of the organic carbon carried by sinking particles dissipates thereby escaping long term sequestration. Particle associated prokaryotes are largely responsible for such organic carbon loss. However, links between this important ecosystem flux and ecological processes such as community development of prokaryotes on different particle fractions (sinking vs. non-sinking) are yet virtually unknown. This prevents accurate predictions of mesopelagic organic carbon loss in response to changing ocean dynamics. Using combined measurements of prokaryotic heterotrophic production rates and species richness in the North Atlantic, we reveal that carbon loss rates and associated microbial richness are drastically different with particle fractions. Our results demonstrate a strong negative correlation between prokaryotic carbon losses and species richness. Such a trend may be related to prokaryotes detaching from fast-sinking particles constantly enriching non-sinking associated communities in the mesopelagic zone. Existing global scale data suggest this negative correlation is a widespread feature of mesopelagic microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.