Summary Matrix adhesions provide critical signals for cell growth or differentiation. They form through a number of distinct steps that follow integrin binding to matrix ligands. In an early step, integrins form clusters that support actin polymerization by an unknown mechanism. This raises the question of how actin polymerization occurs at the integrin clusters. We report here that a major formin in mouse fibroblasts, FHOD1 is recruited to integrin clusters, resulting in actin assembly. Using cell-spreading assays on lipid bilayers, solid substrates and high-resolution force sensing pillar arrays, we find that knockdown of FHOD1 impairs spreading, coordinated application of adhesive force and adhesion maturation. Finally we show that targeting of FHOD1 to the integrin sites depends on the direct interaction with Src family kinases, and is upstream of the activation by Rho Kinase. Thus our findings provide insights into the mechanisms of cell migration with implications for development and disease.
SummarySalmonella is a human and animal pathogen that causes gastro-enteric diseases. The key to Salmonella infection is its entry into intestinal epithelial cells, where the bacterium resides within a Salmonella-containing vacuole (SCV). Salmonella entry also induces the formation of empty macropinosomes, distinct from the SCV, in the vicinity of the entering bacteria. A few minutes after its formation, the SCV increases in size through fusions with the surrounding macropinosomes. Salmonella also induces membrane tubules that emanate from the SCV and lead to SCV shrinkage. Here, we show that these antipodal events are utilized by Salmonella to either establish a vacuolar niche or to be released into the cytosol by SCV rupture. We identify the molecular machinery underlying dynamic SCV growth and shrinkage. In particular, the SNARE proteins SNAP25 and STX4 participate in SCV inflation by fusion with macropinosomes. Thus, host compartment size control emerges as a pathogen strategy for intracellular niche regulation.
Salmonella enterica induces membrane ruffling and genesis of macropinosomes during its interactions with epithelial cells. This is achieved through the type three secretion system-1, which first mediates bacterial attachment to host cells and then injects bacterial effector proteins to alter host behaviour. Next, Salmonella enters into the targeted cell within an early membrane-bound compartment that matures into a slow growing, replicative niche called the Salmonella Containing Vacuole (SCV). Alternatively, the pathogen disrupts the membrane of the early compartment and replicate at high rate in the cytosol. Here, we show that the in situ formed macropinosomes, which have been previously postulated to be relevant for the step of Salmonella entry, are key contributors for the formation of the mature intracellular niche of Salmonella. We first clarify the primary mode of type three secretion system-1 induced Salmonella entry into epithelial cells by combining classical fluorescent microscopy with cutting edge large volume electron microscopy. We observed that Salmonella, similarly to Shigella, enters epithelial cells inside tight vacuoles rather than in large macropinosomes. We next apply this technology to visualise rupturing Salmonella containing compartments, and we use extended time-lapse microscopy to establish early markers that define which Salmonella will eventually hyper replicate. We show that at later infection stages, SCVs harbouring replicating Salmonella have previously fused with the in situ formed macropinosomes. In contrast, such fusion events could not be observed for hyper-replicating Salmonella, suggesting that fusion of the Salmonella entry compartment with macropinosomes is the first committed step of SCV formation.
Shigella flexneri invades host cells by entering within a bacteria-containing vacuole (BCV). In order to establish its niche in the host cytosol, the bacterium ruptures its BCV. Contacts between S. flexneri BCV and infection-associated macropinosomes (IAMs) formed in situ have been reported to enhance BCV disintegration. The mechanism underlying S. flexneri vacuolar escape remains however obscure. To decipher the molecular mechanism priming the communication between the IAMs and S. flexneri BCV, we performed mass spectrometry-based analysis of the magnetically purified IAMs from S. flexneri-infected cells. While proteins involved in host recycling and exocytic pathways were significantly enriched at the IAMs, we demonstrate more precisely that the S. flexneri type III effector protein IpgD mediates the recruitment of the exocyst to the IAMs through the Rab8/Rab11 pathway. This recruitment results in IAM clustering around S. flexneri BCV. More importantly, we reveal that IAM clustering subsequently facilitates an IAM-mediated unwrapping of the ruptured vacuole membranes from S. flexneri, enabling the naked bacterium to be ready for intercellular spread via actin-based motility. Taken together, our work untangles the molecular cascade of S. flexneri-driven host trafficking subversion at IAMs to develop its cytosolic lifestyle, a crucial step en route for infection progression at cellular and tissue level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.