Learner corpora, electronic collections of spoken or written data from foreign language learners, offer unparalleled access to many hitherto uncovered aspects of learner language, particularly in their error-tagged format. This article aims to demonstrate the role that the learner corpus can play in CALL, particularly when used in conjunction with web-based interfaces which provide flexible access to error-tagged corpora that have been enhanced with simple NLP techniques such as POStagging or lemmatization and linked to a wide range of learner and task variables such as mother tongue background or activity type. This new resource is of interest to three main types of users: teachers wishing to prepare pedagogical materials that target learners' attested difficulties; learners themselves for editing or language awareness purposes and NLP researchers, for whom it serves as a benchmark for testing automatic error detection systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.