This article focuses on the development of Natural Language Processing (NLP) tools for Computer Assisted Language Learning (CALL). After identifying the inherent limitations of NLP-free tools, we describe the general framework of Mirto, an NLP-based authoring platform under construction in our laboratory, and organized into four distinct layers: functions, scripts, activities and scenarios. Through several examples, we explain how Mirto's architecture allows to implement state-of-the-art NLP functions, integrate them into easily handled scripts in order to create, without computing skills, didactic activities that could be recorded in more complex sequences or scenarios.
Dans le cadre du lot Gamer de l'Idefi Innovalangues, nous cherchons à produire des ressources ludiques pour l'enseignement / apprentissage des langues, à accompagner les enseignants pour la prise en main des jeux et à travailler sur pourquoi et comment intégrer le jeu dans l'enseignement / apprentissage des langues. Dans cet article, nous présentons Magic Word, premier jeu que nous avons développé. Il s'agit d'un dérivé du Boggle, dont les règles ont été didactisées. Nous présenterons le contexte de réalisation, notre point de vue sur le jeu en regard de la littérature et enfin les raisons qui ont présidé aux décisions prises dans le cadre de la réalisation.
Most e-learning systems engage successively students in reading, writing and assessment activities. In the third phase, the teacher gives feedback on student comprehension, which is often processed a long time after the others, letting the students alone with their difficulties. Thus, there is room to devise automated assessment systems on course comprehension, based on NLP techniques such as latent semantic analysis (LSA). The aim of this paper is to present some systems devised to complete this aim, which implement LSA to model learners' comprehension and/or to compare reading material (e.g., course text) with learners' summaries about it, select reading materials and predict student processes from their summaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.