Despite the success rates of dental implants, peri-implantitis presents as the most common complication in implant dentistry. This review discusses various factors associated with peri-implantitis and various available treatments, highlighting their advantages and disadvantages. Relevant articles on peri-implantitis published in English were reviewed from August 2010 to April 2020 in MEDLINE/PubMed, Scopus, and ScienceDirect. The identified risk indicators of peri-implant diseases are plaque, smoking, history of periodontitis, surface roughness, residual cement, emergence angle >30 degrees, radiation therapy, keratinized tissue width, and function time of the implant, sex, and diabetes. Peri-implantitis treatments can be divided into nonsurgical (mechanical, antiseptic, and antibiotics), surface decontamination (chemical and laser), and surgical (air powder abrasive, resective, and regenerative). However, mechanical debridement alone may fail to eliminate the causative bacteria, and this treatment should be combined with other treatments (antiseptics and surgical treatment). Surface decontamination using chemical agents may be used as an adjuvant treatment; however, the definitive clinical benefit is yet not proven. Laser treatment may result in a short-term decrease in periodontal pocket depth, while air powder abrasive is effective in cleaning a previously contaminated implant surface. Surgical elimination of a pocket, bone recontouring and plaque control are also effective for treating peri-implantitis. The current evidence indicates that regenerative approaches to treat peri-implant defects are unpredictable.
Periodontal health plays an important role in the longevity of prosthodontic restorations. The issues of comparative assessment of prosthetic constructions are complicated and not fully understood. The aim of this article is to review and present the current knowledge regarding the various technical, clinical, and molecular aspects of different prosthetic biomaterials and highlight the interactions between periodontal health and prosthetic restorations. Articles on periodontal health and fixed dental prostheses were searched using the keywords “zirconium”, “CAD/CAM”, “dental ceramics”, “metal–ceramics”, “margin fit”, “crown”, “fixed dental prostheses”, “periodontium”, and “margin gap” in PubMed/Medline, Scopus, Google Scholar, and Science Direct. Further search criteria included being published in English, and between January 1981 and September 2021. Then, relevant articles were selected, included, and critically analyzed in this review. The margin of discrepancy results in the enhanced accumulation of dental biofilm, microleakage, hypersensitivity, margin discoloration, increased gingival crevicular fluid flow (GCF), recurrent caries, pulp infection and, lastly, periodontal lesion and bone loss, which can lead to the failure of prosthetic treatment. Before starting prosthetic treatment, the condition of the periodontal tissues should be assessed for their oral hygiene status, and gingival and periodontal conditions. Zirconium-based restorations made from computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide better results, in terms of marginal fit, inflammation reduction, maintenance, and the restoration of periodontal health and oral hygiene, compared to constructions made by conventional methods, and from other alloys. Compared to subgingival margins, supragingival margins offer better oral hygiene, which can be maintained and does not lead to secondary caries or periodontal disease.
Recently, polyetheretherketone (PEEK) has been introduced to the dental market as a high-performance and chemically inert biomaterial. This study aimed to compare the wear resistance, abrasiveness, color stability, and displacement resistance of zirconia and PEEK milled crowns. An ideal tooth preparation of a first maxillary molar was done and scanned by an intraoral scanner to make a digital model. Then, the prosthetic crown was digitally designed on the CAD software, and the STL file was milled in zirconia (CaroZiir S, Carol Zircolite Pvt. Ltd., Gujarat, India) and PEEK (BioHpp, Bredent GmbH, Senden, Germany) crowns using five-axis CNC milling machines. The wear resistance, color stability, and displacement resistance of the milled monolithic zirconia with unfilled PEEK crowns using a chewing simulator with thermocyclic aging (120,000 cycles) were compared. The antagonist wear, material wear, color stability, and displacement were evaluated and compared among the groups using the Wilcoxon–Mann–Whitney U-test. Zirconia was shown to be three times more abrasive than PEEK (p value < 0.05). Zirconia had twice the wear resistance of PEEK (p value < 0.05). Zirconia was more color stable than PEEK (p value < 0.05). PEEK had more displacement resistance than zirconia (p value < 0.05). PEEK offers minimal abrasion, better stress modulation through plastic deformation, and good color stability, which make it a promising alternative to zirconia crown.
Graphene based materials (GBMs) have potentials for dental and medical applications. GBMs may cause changes in the levels of cytokine released in the body. this study aimed to study the corrosion resistance of graphene oxide (Go) and Go/silver (Go/Ag) nanocomposite coated nickel-titanium (niti) alloy by electrophoretic deposition and to access the viability of human pulp fibroblasts, and the interleukin (IL)-6 and IL-8 expression level. The bare and coated NiTi samples were characterized by scanning electron microscope (SeM), energy-dispersive X-ray spectroscopy (eDS), Raman spectroscopy, surface profilometry, and X-ray diffraction (XRD). The corrosion resistance of the bare NiTi and coated NiTi samples were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The cell viability of human pulp fibroblasts was accessed by the treated culture medium of the bare NiTi and coated NiTi alloys containing 1% fetal bovine serum. IL-6 and IL-8 expression levels were studied by human enzyme-linked immunosorbent assay (ELISA). Data were analyzed using One-way ANOVA (α = 0.05). Both the GO-coated NiTi and GO/Ag-coated NiTi alloys showed better corrosion resistance, a lower rate of corrosion, and higher protection efficiency than the bare NiTi alloy. The coated NiTi alloys were biocompatible to human pulp fibroblasts and showed upregulation of IL-6 and IL-8 levels. Nickel-titanium (NiTi) alloy is widely used due to the special properties of superelasticity and shape memory. Common biomedical applications of NiTi alloys include vascular stents, staples, catheter guide wires, orthodontic wires, and endodontic instruments. However, NiTi alloy exhibits corrosion attack compared to stainless steel, cobalt-chrome, or β-titanium and it results in Ni and Ti ions release. It was found that a significant release of Ni and Ti ions from dental alloys in corrosive environment is noted although the amount of Ni ions release diminish with time 1. Another study found that Ni leaching occurred after placement of the NiTi orthodontic archwires, bands and brackets and was associated with an increase of the Ni ion concentration in the patient's saliva which lasted for 10 weeks and then decreased slowly 2. These ions can cause foreign body reactions, allergy, and adverse reactions in the human body, such as stomatitis, burning sensation, angular cheilitis, and loss of taste 3,4. Similarly, Ni along with Co and Cr remains the most common metals associated with surgical implant failure due to metal sensitization 5. Therefore, the surface modifications and/or coatings have an important role in surface improvement and reducing the corrosion and body reactions. Although various polymer coatings have been tried on NiTi alloy, there has always difficult in making a successful coatings 6,7. Graphene is a sheet of sp 2 carbon atoms that creates a 2-D hexagonal honeycomb structure 8. Graphene based materials (GBMs) have been used for fabricating various nanocomposite coatings to improve surface and me...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.