PURPOSE. Retinal explant cultures provide simplified systems where the functions of the retina and the effects of ocular therapies can be studied in an isolated environment. The purpose of this study was to provide insight into long-term preservation of retinal tissue in culture conditions, enable a deeper understanding of the interdependence of retinal morphology and function, and ensure the reliability of the explant technique for prolonged experiments. METHODS. Retinal explants from adult mice were cultured as organotypic culture at the airmedium interface for 14 days in vitro (DIV). Retinal functionality was assessed by multielectrode array technique and morphology by immunohistochemical methods at several time points during culture. RESULTS. Retinal explants retained viability for 14 DIV, although with diminishing neuronal activity, progressing neuronal loss, and increasing reactive gliosis. We recorded spontaneous retinal ganglion cell (RGC) activity up to 14 DIV with temporally changing distribution of RGC firing rates. Light responsiveness was measurable from RGCs for 7 DIV and from photoreceptors for 2 DIV. Apoptotic cells were detected beginning at 3 DIV with their density peaking at 7 DIV. The number of RGCs gradually decreased by 70% during 14 DIV. The change was accompanied by the loss of RGC functionality, resulting in 84% loss of electrically active RGCs. CONCLUSIONS. Retinal explants provide a valuable tool for studies of retinal functions and development of ocular therapies. However, critical for long-term use, retinal functionality was lost before structural loss, emphasizing a need for both functional and morphologic readouts to determine the overall state of the cultured retina.
Electroconductive polypyrrole/dodecylbenzenesulphonate (PPy/DBS) has been proposed as novel electrode coating for biomedical applications. However, as yet, little is known about its long-term stability in moist conditions. This study compares the stability of PPy/DBS-coated platinum electrodes that are either dry-stored, incubated, or both incubated and electrically stimulated. The electrical and material properties of three different coating thicknesses were monitored for 42 days. Initially, the PPy/DBS-coating decreased the low frequency impedance of the platinum electrodes by 52% to 79%. The dry-stored electrodes remained stable during the follow-up, whereas the properties of all the incubated electrodes were altered in three stages with thickness-dependent duration: stabilization, stable, and degradation. The coated electrodes would be applicable for short-term, low-frequency in vitro measurements of up to 14 days without electrical stimulation, and up to 7 days with stimulation. The coating thickness is bound to other coating properties, and should therefore be selected according to the specific target application. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2202-2213, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.