A new phenanthrene dimer, namely dendropalpebrone (1), was isolated from the whole plant of Dendrobium palpebre, along with nine known compounds (2-10). All of the isolates were evaluated for their hydroxyl radical scavenging effects using a deoxyribose assay. Dendroflorin (10) showed an appreciable activity, and therefore was selected for further studied in RAW264.7 cells. Compound 10 significantly decreased ROS in HO-stimulated RAW264.7 cells in a dose-dependent manner, and improved activity of SOD, GPx, and CAT enzymes.
Two new 2-arylbenzofurans, namely 13-O-methyllakoochin B (1) and artogomezianin (2), were isolated from the root bark of Artocarpus gomezianus, along with six known compounds (3-8). The structures of new compounds were determined by spectroscopic and chemical methods. All of the isolates were evaluated for their α-glucosidase inhibitory activity. Artogomezianin (2) and lakoochin A (3) exhibited strong α-glucosidase inhibitory activity with IC values of 18.25 and 26.19 µM, respectively, as compared with the positive control acarbose.
Oxidative stress is a significant factor in the development of age-related macular degeneration (AMD), which results from cell damage, dysfunction, and death in the retinal pigmented epithelium (RPE). The use of natural compounds with antioxidant properties to protect RPE cells from oxidative stress has been explored in Dendrobium, a genus of orchid plants belonging to the family Orchidaceae. Two new compounds and seven known compounds from the MeOH extract of the whole plant of Dendrobium virgineum were successfully isolated and structurally characterized. Out of all the compounds isolated, 2-methoxy-9,10-dihydrophenanthrene-4,5-diol (3) showed the highest protective effect against hydrogen peroxide (H2O2)-induced oxidative stress in human retinal pigment epithelial (ARPE-19) cells. Therefore, it was selected to evaluate its protective effect and mechanism on oxidative-stress-induced ARPE-19 cells. Cells were pre-treated with compound 3 at 25, 50, and 100 µg/mL for 24 h and then induced with 400 µM H2O2 for 1 h. The results demonstrated that compound 3 significantly (p < 0.05) increased cell viability by 10–35%, decreased ROS production by 10–30%, and reduced phosphorylation of p38, ERK1/2, and SAPK/JNK by 20–70% in a dose-dependent manner without toxicity. Furthermore, compound 3 significantly (p < 0.05) modulated the expression of apoptosis pathway proteins (cytochrome c, Bax and Bcl-2) by 20–80%, and enhanced SOD, CAT, and GPX activities, and GSH levels in a dose-dependent manner. These results suggest that compound 3 protects ARPE-19 cells against oxidative stress through MAPKs and apoptosis pathways, including the antioxidant system. Thus, compound 3 could be considered as an antioxidant agent for preventing AMD development by protecting RPE cells from oxidative stress and maintaining the retina. These findings open up new possibilities for the use of natural compounds in the treatment of AMD and other oxidative-stress-related conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.