Enamel demineralization around orthodontic adhesive is a common esthetic concern during orthodontic treatment. The aim of this study was to prepare orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM) and nisin to enable mineralizing and antibacterial actions. The physicomechanical properties and the inhibition of S. mutans growth of the adhesives with added MCPM (5, 10 wt %) and nisin (5, 10 wt %) were examined. Transbond XT (Trans) was used as the commercial comparison. The adhesive containing a low level of MCPM showed significantly higher monomer conversion (42–62%) than Trans (38%) (p < 0.05). Materials with additives showed lower monomer conversion (p < 0.05), biaxial flexural strength (p < 0.05), and shear bond strength to enamel than those of a control. Additives increased water sorption and solubility of the experimental materials. The addition of MCPM encouraged Ca and P ion release, and the precipitation of calcium phosphate at the bonding interface. The growth of S. mutans in all the groups was comparable (p > 0.05). In conclusion, experimental orthodontic adhesives with additives showed comparable conversion but lesser mechanical properties than the commercial material. The materials showed no antibacterial action, but exhibited ion release and calcium phosphate precipitation. These properties may promote remineralization of the demineralized enamel.
White spot lesions around orthodontic brackets are the major complication during fixed orthodontic treatment. This study prepared orthodontic adhesives for promoting mineral precipitation and reducing bacterial growth. Adhesives with added calcium phosphate monohydrate/Sr-bioactive glass nanoparticles (Sr/CaP) and andrographolide were prepared. The physical/mechanical and antibacterial properties of the adhesives were tested. The additives reduced the monomer conversion of the materials (62 to 47%). The addition of Sr/CaP and andrographolide increased the water sorption (from 23 to 46 μg/mm3) and water solubility (from 0.2 to 5.9 μg/mm3) but reduced the biaxial flexural strength (from 193 to 119 MPa) of the adhesives. The enamel bond strengths of the experimental adhesives (19–34 MPa) were comparable to that of the commercial material (p > 0.05). The Sr/CaP fillers promoted Ca, Sr, and P ion release and the precipitation of calcium phosphate at the debonded interface. An increase in the Sr/CaP concentration enhanced the inhibition of S. mutans by 18%, while the effect of andrographolide was not detected. The abilities of the adhesives to promote ion release, calcium phosphate precipitation, and the growth inhibition of cariogenic bacteria were expected to reduce the occurrence of white spot lesions. The additives reduced the physical/mechanical properties of the materials, but the corresponding values were within the acceptable range.
Our results indicate that Z. cassumunar extracts inhibit COX-2 and MMP-2 production by LPS-activated human gingival fibroblasts through blocking the proinflammatory signaling pathway involving ERK1/2, JNK and p38.
Background Dental caries is a major oral health problem, which associates with cariogenic bacteria. Streptococcus mutans and Lactobacillus acidophilus are facultative anaerobic bacteria that are found in tooth decay. Accordingly, neem leaf extract was developed due to its great anti-microbial property against many bacteria. The aim of this study was to determine anti-cariogenic properties of neem leaf extract in a novel paste preparation. Material and Methods The neem extract was derived from maceration of dry neem leaves in ethanol for 48 h. The ethanolic extract was subjected to chemical identification using GC-MS. Neem pastes were prepared from ethanolic extract mixed with polyethylene glycol paste with or without zinc oxide. S. mutans and L. acidophilus test were initiated at bacterial concentration of 108 CFU/ml. The antibacterial activity was then performed by disc diffusion method following by minimum bactericidal concentration (MBC) technique. Results GC-MS result displayed 35 compounds. Compounds found in the extract were n-Hexadecanoic acid (31.18%), Hentriacontane (18%), Phytol (16.79%). Disc diffusion showed that ethanolic extract and neem pastes inhibited growth of both bacteria. For MBC, neem paste with zinc oxide at concentration of neem 0.4 mg/ml was the most effective concentration on inhibiting S. mutans growth. Neem pastes and ethanolic extract at concentration of neem 6.25 mg/ml inhibited L. acidophilus growth. Conclusions The ethanolic neem leaf extract and novel neem pastes had antimicrobial effect on both S. mutans and L. acidophilus . By this property, neem paste could be developed for the application in dental field, i.e. pulp capping. Key words: Neem, Azadirachta indica, antimicrobial, cariogenic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.