Hepatitis C virus infection leads to a wide spectrum of liver diseases ranging from mild chronic hepatitis to end-stage cirrhosis and hepatocellular carcinoma. An intriguing aspect of the HCV infection is its close connection with lipid metabolism playing an important role in the HCV life cycle and in its pathogenesis. HCV is known to be a hepatotropic virus; however, it can also infect peripheral blood mononuclear cells (PBMCs). The goal of the current investigation is to compare the adipogenesis profile of liver tissues to lymphocytes of HCV infected patients, in order to understand if PBMCs may reflect the alterations of intracellular pathways occurring during HCV-related liver steatosis. Using the Human Adipogenesis PCR Array, gene expression was analyzed in liver samples and PBMCs of chronic HCV+, HBV+ and Healthy Donors (HDs) patients. We observed a similar modulation of lipid metabolism in HCV+ and HBV+liver tissues and lymphoid, cells suggesting that PBMCs reflect the liver adipogenesis deregulation related to infection, even if the two viruses have a different impact in the regulation of the adipogenesis mechanisms. In particular, some genes involved in lipid metabolism and inflammation, as well as in cell transformation, were up-regulated, in a similar way, in both HCV models analyzed. Interestingly, these genes were positively correlated to virological and hepatic functional parameters of HCV+ patients. On the contrary, HBV+ patients displayed a completely different profile. PBMCs of HCV+ patients seem to be useful model to study how HCV-related lipid metabolism deregulation occurs in liver. The obtained data suggest some molecules as new possible biomarkers of HCV-related liver damage progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.