Most of the existing question answering models can be largely compiled into two categories: i) open domain question answering models that answer generic questions and use largescale knowledge base along with the targeted web-corpus retrieval and ii) closed domain question answering models that address focused questioning area and use complex deep learning models. Both the above models derive answers through textual comprehension methods. Due to their inability to capture the pedagogical meaning of textual content, these models are not appropriately suited to the educational field for pedagogy. In this paper, we propose an on-the-fly conceptual network model that incorporates educational semantics. The proposed model preserves correlations between conceptual entities by applying intelligent indexing algorithms on the concept network so as to improve answer generation. This model can be utilized for building interactive conversational agents for aiding classroom learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.