In our study, we concluded that autogenous calvarial bone grafts have better mechanical, biologic, and immunologic properties. This procedure allows the surgeon to reconstruct moderately large cranial defect with ease of access within single or adjacent incision to the operating site with minimal postoperative morbidity and discomfort.
Bone drilling is one of the steps in a typical surgical operation that is performed around the world for reconstruction and repair of the fractured bone. During the last decade, various techniques, such as two-step drilling, ultrasonic-assisted bone drilling and laser drilling, have been introduced to control the level of forces and torque during bone drilling. In this research, rotary ultrasonic bone drilling has been successfully attempted to minimize the forces and torque during bone drilling. The drilling experiments were planned and carried out on pig bones using the design of experiments (response surface methodology). Analysis of variance was carried out to find the effect of process factors such as rotational speed, feed rate, drill diameter and ultrasonic vibrational amplitude on the force and torque. Statistical models were developed for the force and torque with 95% confidential interval, and confirmation experiments have been carried out to validate the models. Microcracks developed during drilling process were characterized by scanning electron microscopy. The results revealed that rotary ultrasonic bone drilling process offered a lower force and torque making it a potential process for bone drilling in orthopedic surgery.
Bone drilling is one of the most common operations used to repair fractured parts of bones. During a bone drilling process, microcracks are generated on the inner surface of the drilled holes that can detrimentally affect osteosynthesis and healing. This study focuses on the investigation of microcracks and pullout strength of cortical-bone screws in drilled holes. It compares conventional surgical bone drilling (CSBD) with rotary ultrasonic bone drilling (RUBD), a novel approach employing ultrasonic vibration with a diamond-coated hollow tool. Both techniques were used to drill holes in porcine bones in an in-vitro study. Scanning electron microscopy was used to observe microcracks and surface morphology. The results obtained showed a significant decrease in the number and dimensions of microcracks generated on the inner surface of drilled holes with the RUBD process in comparison to CSBD. It was also observed that a higher rotational speed and a lower feed rate resulted in lower damage, i.e. fewer microcracks. Biomechanical axial pullout strength of a cortical bone screw inserted into a hole drilled with RUBD was found to be much higher (55-385%) than that for CSBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.