Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N 2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.
The efficient catalytic asymmetric addition of an inexpensive and nonvolatile cyanide source such as NaCN or KCN and acetic anhydride to various aldehydes was catalyzed by recyclable dimeric Ti IV and V V chiral salen complexes at -20°C. High chiral induction (96 % ee) in the O-acetylcyanohydrin was obtained in the case of 2-fluorobenzaldehyde, and the results achieved with sodium cyanide are quite comparable
Chiral amino alcohols supported on mesoporous silicas were synthesized and evaluated as a new class of chiral ligands in copper-catalyzed nitroaldol reaction under heterogeneous and mild reaction conditions. The activity and enantioselectivity of the present catalytic system is immensely influenced by the presence of achiral and chiral bases as an additive. The heterogenized chiral copper(II) complex of amino alcohol was found to be an effective recyclable catalyst for the nitroaldol reaction of different aldehydes such as aromatic, aliphatic, alicyclic, and α-β unsaturated aldehydes to produce nitroaldol products with remarkably high enantioselectivity (≥99%) and yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.