We devise an autoencoder based strategy to facilitate anomaly detection for boosted jets, employing Graph Neural Networks (GNNs) to do so. To overcome known limitations of GNN autoencoders, we design a symmetric decoder capable of simultaneously reconstructing edge features and node features. Focusing on latent space based discriminators, we find that such setups provide a promising avenue to isolate new physics and competing SM signatures from sensitivity-limiting QCD jet contributions. We demonstrate the flexibility and broad applicability of this approach using examples of W bosons, top quarks, and exotic hadronically-decaying exotic scalar bosons.
Hadronic signals of new-physics origin at the Large Hadron Collider can remain hidden within the copiously produced hadronic jets. Unveiling such signatures require highly performant deep-learning algorithms. We construct a class of Graph Neural Networks (GNN) in the message-passing formalism that makes the network output infra-red and collinear (IRC) safe, an important criterion satisfied within perturbative QCD calculations. Including IRC safety of the network output as a requirement in the construction of the GNN improves its explainability and robustness against theoretical uncertainties in the data. We generalise Energy Flow Networks (EFN), an IRC safe deep-learning algorithm on a point cloud, defining energy weighted local and global readouts on GNNs. Applying the simplest of such networks to identify top quarks, W bosons and quark/gluon jets, we find that it outperforms state-of-the-art EFNs. Additionally, we obtain a general class of graph construction algorithms that give structurally invariant graphs in the IRC limit, a necessary criterion for the IRC safety of the GNN output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.