Universal picking (UP), or reliable robot grasping of a diverse range of novel objects from heaps, is a grand challenge for e-commerce order fulfillment, manufacturing, inspection, and home service robots. Optimizing the rate, reliability, and range of UP is difficult due to inherent uncertainty in sensing, control, and contact physics. This paper explores “ambidextrous” robot grasping, where two or more heterogeneous grippers are used. We present Dexterity Network (Dex-Net) 4.0, a substantial extension to previous versions of Dex-Net that learns policies for a given set of grippers by training on synthetic datasets using domain randomization with analytic models of physics and geometry. We train policies for a parallel-jaw and a vacuum-based suction cup gripper on 5 million synthetic depth images, grasps, and rewards generated from heaps of three-dimensional objects. On a physical robot with two grippers, the Dex-Net 4.0 policy consistently clears bins of up to 25 novel objects with reliability greater than 95% at a rate of more than 300 mean picks per hour.
Robots for picking in e-commerce warehouses require rapid computing of efficient and smooth robot arm motions between varying configurations. Recent results integrate grasp analysis with arm motion planning to compute optimal smooth arm motions; however, computation times on the order of tens of seconds dominate motion times. Recent advances in deep learning allow neural networks to quickly compute these motions; however, they lack the precision required to produce kinematically and dynamically feasible motions. While infeasible, the network-computed motions approximate the optimized results. The proposed method warm starts the optimization process by using the approximate motions as a starting point from which the optimizing motion planner refines to an optimized and feasible motion with few iterations. In experiments, the proposed deep learning–based warm-started optimizing motion planner reduces compute and motion time when compared to a sampling-based asymptotically optimal motion planner and an optimizing motion planner. When applied to grasp-optimized motion planning, the results suggest that deep learning can reduce the computation time by two orders of magnitude (300×), from 29 s to 80 ms, making it practical for e-commerce warehouse picking.
Efficiently finding an occluded object with lateral access arises in many contexts such as warehouses, retail, healthcare, shipping, and homes. We introduce LAX-RAY (Lateral Access maXimal Reduction of occupancY support Area), a system to automate the mechanical search for occluded objects on shelves. For such lateral access environments, LAX-RAY couples a perception pipeline predicting a target object occupancy support distribution with a mechanical search policy that sequentially selects occluding objects to push to the side to reveal the target as efficiently as possible. Within the context of extruded polygonal objects and a stationary target with a known aspect ratio, we explore three lateral access search policies: Uniform, Distribution Area Reduction (DAR) and Distribution Entropy Reduction over n Steps (DER-n) utilizing the support distribution and prior information. We evaluate these policies using the First-Order Shelf Simulator (FOSS) in which we simulate 800 random shelf environments of varying difficulty, and in a physical shelf environment with a Fetch robot and an embedded PrimeSense RGBD Camera. Average simulation results of 87.3% success rate demonstrate better performance of DER-2. Physical results show a success rate of at least 80% for DAR and DER-n, suggesting that LAX-RAY can efficiently reveal the target object in reality. Both results show significantly better performance of DAR and DER-n compared to the uniform policy with uniform probability distribution assumption in non-trivial cases, suggesting the importance of distribution prediction. Code, videos, and supplementary material can be found at https://sites.google.com/ berkeley.edu/lax-ray.
High-speed motions in pick-and-place operations are critical to making robots cost-effective in many automation scenarios, from warehouses and manufacturing to hospitals and homes. However, motions can be too fast-such as when the object being transported has an open-top, is fragile, or both. One way to avoid spills or damage, is to move the arm slowly. We propose Grasp-Optimized Motion Planning for Fast Inertial Transport (GOMP-FIT), a time-optimizing motion planner based on our prior work, that includes constraints based on accelerations at the robot end-effector. With GOMP-FIT, a robot can perform high-speed motions that avoid obstacles and use inertial forces to its advantage. In experiments transporting open-top containers with varying tilt tolerances, whereas GOMP computes sub-second motions that spill up to 90 % of the contents during transport, GOMP-FIT generates motions that spill 0 % of contents while being slowed by as little as 0 % when there are few obstacles, 30 % when there are high obstacles and 45-degree tolerances, and 50 % when there 15-degree tolerances and few obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.