Chronic pancreatitis (CP) is a progressive and irreversible inflammatory and fibrotic disease with no cure. Unlike acute pancreatitis, we find that alternatively activated macrophages (AAMs) are dominant in mouse and human CP. AAMs are dependent on IL-4 and IL-13 signaling and we show that mice lacking IL-4Rα, myeloid specific IL-4Rα, and IL-4/IL-13 were less susceptible to pancreatic fibrosis. Furthermore, we demonstrate that mouse and human pancreatic stellate cells (PSCs) are a source of IL-4/IL-13. Notably, we show that pharmacologic inhibition of IL-4/IL-13 in human ex-vivo studies as well as in established mouse CP decreases pancreatic AAMs and fibrosis. We identify a critical role for macrophages in pancreatic fibrosis and in turn PSCs as important inducers of macrophage alternative activation. Our study challenges and identifies pathways involved in cross talk between macrophages and PSCs that can be targeted to reverse or halt pancreatic fibrosis progression.
BACKGROUND & AIMS Cigarette smoke has been identified as an independent risk factor for chronic pancreatitis (CP). Little is known about the mechanisms by which smoking promotes development of CP. We assessed the effects of aryl hydrocarbon receptor (AhR) ligands found in cigarette smoke on immune cell activation in humans and pancreatic fibrosis in animal models of CP. METHODS We obtained serum samples from patients with CP treated at Stanford University hospital and healthy individuals (controls) and isolated CD4+ T cells. Levels of interleukin-22 (IL22) were measured by enzyme-linked immunosorbent assay and smoking histories were collected. T cells from healthy nonsmokers and smokers were stimulated and incubated with AhR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin or benzo[a]pyrene) or antagonists and analyzed by flow cytometry. Mice were given intraperitoneal injections of caerulein or saline, with or without lipopolysaccharide, to induce CP. Some mice were given intraperitoneal injections of AhR agonists at the start of caerulein injection, with or without an antibody against IL22 (anti-IL22) starting 2 weeks after the first caerulein injection, or recombinant mouse IL22 or vehicle (control) intraperitoneally 4 weeks after the first caerulein injection. Mice were exposed to normal air or cigarette smoke for 6 h/d for 7 weeks and expression of AhR gene targets was measured. Pancreata were collected from all mice and analyzed by histology and quantitative reverse transcription polymerase chain reaction. Pancreatic stellate cells and T cells were isolated and studied using immunoblot, immunofluorescence, flow cytometry, and enzyme-linked immunosorbent analyses. RESULTS Mice given AhR agonists developed more severe pancreatic fibrosis (based on decreased pancreas size, histology, and increased expression of fibrosis-associated genes) than mice not given agonists after caerulein injection. In mice given saline instead of caerulein, AhR ligands did not induce fibrosis. Pancreatic T cells from mice given AhR agonists and caerulein were activated and expressed IL22, but not IL17 or interferon gamma. Human T cells exposed to AhR agonists up-regulated expression of IL22. In mice given anti-IL22, pancreatic fibrosis did not progress, whereas mice given recombinant IL22 had a smaller pancreas and increased fibrosis. Pancreatic stellate cells isolated from mouse and human pancreata expressed the IL22 receptor IL22RA1. Incubation of the pancreatic stellate cells with IL22 induced their expression of the extracellular matrix genes fibronectin 1 and collagen type I α1 chain, but not α2 smooth muscle actin or transforming growth factor–β. Serum samples from smokers had significantly higher levels of IL22 than those from nonsmokers. CONCLUSIONS AhR ligands found in cigarette smoke increase the severity of pancreatic fibrosis in mouse models of pancreatitis via up-regulation of IL22. This pathway might be targeted for treatment of CP and serve as a biomarker of disease.
Alcohol and gallstones are the most common etiologic factors in acute pancreatitis (AP). Recurrent AP can lead to chronic pancreatitis (CP). Although the underlying pathophysiology of the disease is complex, immune cells are critical in the pathogenesis of pancreatitis and determining disease severity. In this review, we discuss the role of innate and adaptive immune cells in both AP and CP, potential immune-based therapeutic targets, and animal models used to understand our knowledge of the disease. The relative difficulty of obtaining human pancreatic tissue during pancreatitis makes animal models necessary. Animal models of pancreatitis have been generated to understand disease pathogenesis, test therapeutic interventions, and investigate immune responses. Although current animal models do not recapitulate all aspects of human disease, until better models can be developed available models are useful in addressing key research questions. Differences between experimental and clinical pancreatitis need consideration, and when therapies are tested, models with established disease ought to be included.
The purpose of this study was to evaluate the effects of core strengthening combined with pelvic proprioceptive neuromuscular facilitation (PNF) on trunk impairment, balance, gait, and functional ability of chronic stroke patients. Twenty-three participants with chronic stroke were recruited and randomly allocated to one of the two groups: core strengthening combined with pelvic PNF (group 1, n=13), and pelvic PNF with trunk flexibility exercises (group 2, n=10). Intervention was given to both groups for 60 min per session 5 times per week for 4 weeks. Performance of both groups was evaluated on Trunk Impairment Scale, Tinetti Performance Oriented Mobility Assessment (Tinetti-POMA), Balance Evaluation Systems Test (Mini-BESTest), Wisconsin Gait Scale, and Barthel Activities of Daily Living Index prior to and after the completion of the intervention. The comparison between postintervention scores of Tinetti-POMA between group 1 (18.76±1.78) and group 2 (16.8±1.87) and Mini-BESTest group 1 (16.15±1.28) and group 2 (14.7±1.41) showed significant difference (P=0.018). The results indicated that core stabilisation combined with pelvic PNF was more effective for improving trunk impairment, balance and gait of chronic stroke patients.
Disorders and diseases of the gastrointestinal system encompass a wide array of pathogenic mechanisms as a result of genetic, infectious, neoplastic, and inflammatory conditions. Inflammatory diseases in general are rising in incidence and are emerging clinical problems in gastroenterology and hepatology. Hemeoxygenase-1 (HO-1) is a stress-inducible enzyme that has been shown to confer protection in various organ-system models. Its downstream effectors, carbon monoxide and biliverdin have also been shown to offer these beneficial effects. Many studies suggest that induction of HO-1 expression in gastrointestinal tissues and cells plays a critical role in cytoprotection and resolving inflammation as well as tissue injury. In this review we examine the protective role of HO-1 and its downstream effectors in modulating inflammatory diseases of the upper (esophagus and stomach) and lower (small and large intestine) gastrointestinal tract, the liver, and the pancreas. Cytoprotective, anti-inflammatory, anti-proliferative, anti-oxidant, and anti-apoptotic activities of HO-1 make it a promising if not ideal therapeutic target for inflammatory diseases of the gastrointestinal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.