RNA exosome is a highly conserved ribonuclease complex essential for RNA processing and degradation. Bi‐allelic variants in exosome subunits EXOSC3, EXOSC8 and EXOSC9 have been reported to cause pontocerebellar hypoplasia type 1B, type 1C and type 1D, respectively, while those in EXOSC2 cause short stature, hearing loss, retinitis pigmentosa and distinctive facies. We ascertained an 8‐months‐old male with developmental delay, microcephaly, subtle dysmorphism and hypotonia. Pontocerebellar hypoplasia and delayed myelination were noted on neuroimaging. A similarly affected elder sibling succumbed at the age of 4‐years 6‐months. Chromosomal microarray returned normal results. Exome sequencing revealed a homozygous missense variant, c.104C > T p.(Ser35Leu) in EXOSC1 (NM_016046.5) as the possible candidate. In silico mutagenesis revealed loss of a polar contact with neighboring Leu37 residue. Quantitative real‐time PCR indicated no appreciable differences in EXOSC1 transcript levels. Immunoblotting and blue native PAGE revealed reduction in the EXOSC1 protein levels and EXO9 complex in the proband, respectively. We herein report an individual with the bi‐allelic variant c.104C>T p.(Ser35Leu) in EXOSC1 and clinical features of pontocerebellar hypoplasia type 1. Immunoblotting and blue native PAGE provide evidence for the pathogenicity of the variant. Thus, we propose EXOSC1 as a novel candidate gene for pontocerebellar hypoplasia.
Biallelic loss of function variants in TRIP11 encoding for the Golgi microtubuleassociated protein 210 (GMAP-210) causes the lethal chondrodysplasia achondrogenesis type 1A (ACG1A). Loss of TRIP11 activity has been shown to impair Golgi structure, vesicular transport, and results in loss of IFT20 anchorage to the Golgi that is vital for ciliary trafficking and ciliogenesis. Here, we report four fetuses, two each from two families, who were ascertained antenatally with ACG1A. Affected fetuses in both families are homozygous for the deep intronic TRIP11 variant, c.5457+81T>A, which was found in a shared region of homozygosity. This variant was found to cause aberrant transcript splicing and the retention of 77 base pairs of intron 18. The TRIP11 messenger RNA and protein levels were drastically reduced in fibroblast cells derived from one of the affected fetuses. Using immunofluorescence we also detected highly compacted Golgi apparatus in affected fibroblasts. Further, we observed a significant reduction in the frequency of ciliated cells and in the length of primary cilia in subject-derived cell lines, not reported so far in patient cells with TRIP11 null or hypomorphic variants. Our findings illustrate how pathogenic variants in intronic regions of TRIP11 can impact transcript splicing, expression, and activity, resulting in ACG1A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.