Subclinical ketosis (SCK) is defined as concentrations of β-hydroxybutyrate (BHBA) ≥ 1.2 to 1.4 mmol/L and it is considered a gateway condition for other metabolic and infectious disorders such as metritis, mastitis, clinical ketosis, and displaced abomasum. Reported prevalence rates range from 6.9 to 43% in the first 2 mo of lactation. However, there is a dearth of information on prevalence rates considering the diversity of European dairy farms. The objectives of this study were to (1) determine prevalence of SCK, (2) identify thresholds of BHBA, and (3) study their relationships with postpartum metritis, clinical ketosis, displaced abomasum, lameness, and mastitis in European dairy farms. From May to October 2011, a convenience sample of 528 dairy herds from Croatia, Germany, Hungary, Italy, Poland, Portugal, Serbia, Slovenia, Spain, and Turkey was studied. β-Hydroxybutyrate levels were measured in 5,884 cows with a handheld meter within 2 to 15 d in milk (DIM). On average, 11 cows were enrolled per farm and relevant information (e.g., DIM, postpartum diseases, herd size) was recorded. Using receiver operator characteristic curve analyses, blood BHBA thresholds were determined for the occurrence of metritis, mastitis, clinical ketosis, displaced abomasum, and lameness. Multivariate binary logistic regression models were built for each disease, considering cow as the experimental unit and herd as a random effect. Overall prevalence of SCK (i.e., blood BHBA ≥ 1.2 mmol/L) within 10 countries was 21.8%, ranging from 11.2 to 36.6%. Cows with SCK had 1.5, 9.5, and 5.0 times greater odds of developing metritis, clinical ketosis, and displaced abomasum, respectively. Multivariate binary logistic regression models demonstrated that cows with blood BHBA levels of ≥ 1.4, ≥ 1.1 and ≥ 1.7 mmol/L during 2 to 15 DIM had 1.7, 10.5, and 6.9 times greater odds of developing metritis, clinical ketosis, and displaced abomasum, respectively, compared with cows with lower BHBA blood levels. Interestingly, a postpartum blood BHBA threshold ≥ 1.1 mmol/L increased the odds for lameness in dairy cows 1.8 (95% confidence interval: 1.3 to 2.5) times. Overall, prevalence of SCK was high between 2 to 15 DIM and SCK increased the odds of metritis, clinical ketosis, lameness, and displaced abomasum in European dairy herds.
The prevalence of dystocia is high in many dairy herds and is associated with stillbirth and negative effects for the cow. An accurate predictor of calving would enable supervision of cows more precisely to a relevant time interval so that obstetrical assistance can be provided in a timely manner. This might help to decrease calf mortality rate. Evidence exists that cows exhibit a decrease in body temperature before the onset of calving. The performance of a decrease in body temperature as a test to predict the onset of calving in dairy cows has not been investigated. The objective was to investigate test criteria of a decrease in vaginal and rectal temperature as predictors of calving in dairy cows. In 3 experiments, temperature loggers (Minilog 8, Vemco Ltd., Halifax, Canada) were inserted into the vagina of cows before calving (n = 85), and rectal temperatures were measured twice daily in 55 of these cows. Vaginal temperatures were 0.2 to 0.3 °C and 0.6 to 0.7 °C lower on the day of calving compared with 24 and 48 h before calving, respectively. Rectal temperatures were 0.3 to 0.5 °C and 0.4 to 0.6 °C lower on the day of calving compared with 24 and 48 h before calving, respectively. Vaginal temperatures exhibited a diurnal rhythm during the 120 h before calving, which continued on a lower level during the 48 h preceding parturition. In the 3 experiments, a decrease in vaginal temperature of ≥ 0.3 °C over 24h could predict calving within 24h, with sensitivity ranging from 62 to 71% and specificity ranging from 81 to 87%. Similarly, a decrease in rectal temperature measured at 0730 h of ≥ 0.3 °C could predict calving within 24h, with sensitivity from 44 to 69% and specificity from 86 to 88%. Although dairy cows exhibit a distinctive decrease in vaginal and rectal temperatures commencing approximately 48 h before calving, detecting this decrease does not determine the onset of calving precisely. Nevertheless, it can provide valuable information in addition to the traditional signs (i.e., relaxation of the sacrosciatic ligament) that calving is imminent.
Sudden dry-off is an established management practice in the dairy industry. But milk yield has been increasing continuously during the last decades. There is no information whether the dry-off procedure, which often results in swollen and firm udders, causes stress, particularly in high-producing dairy cows. Therefore, we evaluated the effect of a sudden dry-off on extramammary udder pressure and the concentration of fecal glucocorticoid metabolites (i.e., 11,17-dioxoandrostane, 11,17-DOA) as an indirect stress parameter. Measurements were carried out within the last week before dry-off and until 9d after dry-off considering 3 groups of milk yield (i.e., low: <15 kg/d, medium: 15-20 kg/d, and high: >20 kg/d). Udder pressure increased in all yield groups after dry-off, peaked at d 2 after dry-off and decreased afterwards. Pressures were highest in high-yielding cows and lowest in low-yielding cows. But only in high-yielding cows was udder pressure after dry-off higher than before dry-off. Baseline 11,17-DOA concentrations depended on milk yield. They were highest in low-yielding (121.7 ± 33.3 ng/g) and lowest in high-yielding cows (71.1 ± 30.0 ng/g). After dry-off, 11,17-DOA increased in all yield groups and peaked at d 3. Whereas in medium- and high-yielding cows 11,17-DOA levels differed significantly from their respective baseline during the whole 9-d measuring period, low-yielding cows showed elevated 11,17-DOA levels only on d 3 after dry-off. However, especially the increase in 11,17-DOA after dry-off between the 3 yield groups was considerably different. Mean 11,17-DOA increase from baseline to d 3 was highest in high-yielding cows (129.1%) and considerably lower in low-yielding cows (40.1%). The highest fecal 11,17-DOA concentrations were measured on d 3 after dry-off, indicating that the stress was most intense on d 2, which is due to an 18-h time lag; at about the same time, udder pressure peaked. Our results showed a negligible effect of a sudden dry-off on low-yielding cows. High-yielding cows, however, faced high extramammary pressures and increased glucocorticoid production. Considering animal welfare aspects, a review of the current dry-off strategies might be warranted.
Lying behavior might indicate how the animal interacts with its environment and is an important indicator of cow and calf comfort. Measuring behavior can be time consuming; therefore, behavioral recording with the help of loggers has become common. Recently, the Hobo Pendant G data logger (Onset Computer Corp., Bourne, MA) was validated for measuring lying behavior in cows but no work to date has validated this logger for measuring lying behavior in calves. The objective of this study was to test the accuracy of the Hobo Pendant G data logger for measuring total lying time and frequency of lying bouts in dairy calves. In 2 experiments (experiment 1: thirty-seven 2-h observation periods; experiment 2: nineteen 24-h observation periods), we tested the effect of 2 different recording intervals, the effect of attachment to different legs, and the effect of removing short, potentially erroneous readings. We found an excellent relationship when comparing the 30-s and 60-s recording intervals. For total lying time and bout frequency, the highest correlation was found when the logger was attached to the hind legs and recording was conducted with a 60-s sampling interval. In experiment 2, average total lying time was 1,077 ± 54 min/24 h (18.0 ± 0.9h/24h), with an average frequency of 19.4 ± 4.5 bouts per day. Predictability, sensitivity, and specificity for experiment 2 were >97% using the 60-s recording interval and removing single readings of lying or standing from the data set compared with direct observation as reference. The data logger accurately measured total lying time and bout frequency when the sampling interval was ≤ 60 s and short readings of lying and standing up to 1 min were converted into the preceding behavior. The best results were achieved by attaching the logger to the right hind leg.
The overall objective of this study was to study the influence of induced estrus on body temperature, comparing 5 distinct intervals around induced estrus and to determine the diurnal pattern from 4 ± 1 d before to 4 ± 1 d after induced estrus. Sixteen estrous cycles of 9 postpartum dairy cows were synchronized with 2 injections of PGF(2α), 10 d apart. After the second PGF(2α) injection on d 10, temperature loggers were inserted into the vaginal cavity for a 12 ± 1-d period. Two days later, a third dose of PGF(2α) was injected to induce estrus. After confirmation of a corpus luteum, loggers were removed on d 5 ± 1. Observation of estrus, rectal palpation, and ultrasound scanning to determine ovulation were carried out every 4 ± 1h, beginning at 12h after the third PGF(2α) injection. Blood samples from the vena coccygea mediana were collected twice daily from d 11 to 12 and every 4 ± 1h after the third PGF(2α) injection until ovulation. Vaginal temperature was recorded every 5 min and averaged to hourly means for the following 5 periods: 1) 48 h preceding the third PGF(2α) injection, 2) from the third PGF(2α) injection to first signs of estrus, 3) estrus to ovulation, 4) a 4-h interval in which ovulation occurred, and 5) a 96-h post-ovulation period. High body temperatures (39.0 ± 0.5 °C) and low progesterone (P4) concentrations (<0.5 ng/mL) were observed during estrus, whereas low body temperatures were observed from PGF(2α) injection to estrus (38.6 ± 0.3 °C) and around ovulation (38.5 ± 0.2 °C), respectively. An association between body temperature and serum P4 concentrations did not exist. However, P4 concentrations on d 11 and 12 were high (5.0 ± 1.5 ng/mL) and decreased (0.9 ± 0.2 ng/mL) after ovulation. Diurnal temperature rhythms were similar before and after estrus. Vaginal temperature before estrus (d 11 and 12) was slightly (0.1 °C) higher compared with the post-ovulation period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.