Summary Coronavirus disease 2019 (COVID‐19) has had a significant impact on global healthcare services. In an attempt to limit the spread of infection and to preserve healthcare resources, one commonly used strategy has been to postpone elective surgery, whilst maintaining the provision of anaesthetic care for urgent and emergency surgery. General anaesthesia with airway intervention leads to aerosol generation, which increases the risk of COVID‐19 contamination in operating rooms and significantly exposes the healthcare teams to COVID‐19 infection during both tracheal intubation and extubation. Therefore, the provision of regional anaesthesia may be key during this pandemic, as it may reduce the need for general anaesthesia and the associated risk from aerosol‐generating procedures. However, guidelines on the safe performance of regional anaesthesia in light of the COVID‐19 pandemic are limited. The goal of this review is to provide up‐to‐date, evidence‐based recommendations or expert opinion when evidence is limited, for performing regional anaesthesia procedures in patients with suspected or confirmed COVID‐19 infection. These recommendations focus on seven specific domains including: planning of resources and staffing; modifying the clinical environment; preparing equipment, supplies and drugs; selecting appropriate personal protective equipment; providing adequate oxygen therapy; assessing for and safely performing regional anaesthesia procedures; and monitoring during the conduct of anaesthesia and post‐anaesthetic care. Implicit in these recommendations is preserving patient safety whilst protecting healthcare providers from possible exposure.
BackgroundThere is heterogeneity in the names and anatomical descriptions of regional anesthetic techniques. This may have adverse consequences on education, research, and implementation into clinical practice. We aimed to produce standardized nomenclature for abdominal wall, paraspinal, and chest wall regional anesthetic techniques.MethodsWe conducted an international consensus study involving experts using a three-round Delphi method to produce a list of names and corresponding descriptions of anatomical targets. After long-list formulation by a Steering Committee, the first and second rounds involved anonymous electronic voting and commenting, with the third round involving a virtual round table discussion aiming to achieve consensus on items that had yet to achieve it. Novel names were presented where required for anatomical clarity and harmonization. Strong consensus was defined as ≥75% agreement and weak consensus as 50% to 74% agreement.ResultsSixty expert Collaborators participated in this study. After three rounds and clarification, harmonization, and introduction of novel nomenclature, strong consensus was achieved for the names of 16 block names and weak consensus for four names. For anatomical descriptions, strong consensus was achieved for 19 blocks and weak consensus was achieved for one approach. Several areas requiring further research were identified.ConclusionsHarmonization and standardization of nomenclature may improve education, research, and ultimately patient care. We present the first international consensus on nomenclature and anatomical descriptions of blocks of the abdominal wall, chest wall, and paraspinal blocks. We recommend using the consensus results in academic and clinical practice.
Background: Rebound pain is a common, yet under-recognised acute increase in pain severity after a peripheral nerve block (PNB) has receded, typically manifesting within 24 h after the block was performed. This retrospective cohort study investigated the incidence and factors associated with rebound pain in patients who received a PNB for ambulatory surgery. Methods: Ambulatory surgery patients who received a preoperative PNB between March 2017 and February 2019 were included. Rebound pain was defined as the transition from well-controlled pain (numerical rating scale [NRS] 3) while the block is working to severe pain (NRS !7) within 24 h of block performance. Patient, surgical, and anaesthetic factors were analysed for association with rebound pain by univariate, multivariable, and machine learning methods. Results: Four hundred and eighty-two (49.6%) of 972 included patients experienced rebound pain as per the definition. Multivariable analysis showed that the factors independently associated with rebound pain were younger age (odds ratio [OR] 0.98; 95% confidence interval [CI] 0.97e0.99), female gender (OR 1.52 [1.15e2.02]), surgery involving bone (OR 1.82 [1.38e2.40]), and absence of perioperative i.v. dexamethasone (OR 1.78 [1.12e2.83]). Despite a high incidence of rebound pain, there were high rates of patient satisfaction (83.2%) and return to daily activities (96.5%). Conclusions: Rebound pain occurred in half of the patients and showed independent associations with age, female gender, bone surgery, and absence of intraoperative use of i.v. dexamethasone. Until further research is available, clinicians should continue to use preventative strategies, especially for patients at higher risk of experiencing rebound pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.