Sunitinib malate is a multi-targeted receptor tyrosine kinase inhibitor used in the treatment of human malignancies. A substantial number of sunitinib-treated patients develop cardiac dysfunction, but the mechanism of sunitinib-induced cardiotoxicity is poorly understood. We show that mice treated with sunitinib develop cardiac and coronary microvascular dysfunction and exhibit an impaired cardiac response to stress. The physiological changes caused by treatment with sunitinib are accompanied by a substantial depletion of coronary microvascular pericytes. Pericytes are a cell type that is dependent on intact PDGFR signaling but whose role in the heart is poorly defined. Sunitinib-induced pericyte depletion and coronary microvascular dysfunction are recapitulated by CP-673451, a structurally distinct PDGFR inhibitor, confirming the role of PDGFR in pericyte survival. Thalidomide, an anti-cancer agent that is known to exert beneficial effects on pericyte survival and function, prevents sunitinib-induced pericyte cell death in vitro and prevents sunitinib-induced cardiotoxicity in vivo in a mouse model. Our findings suggest that pericytes are the primary cellular target of sunitinib-induced cardiotoxicity and reveal the pericyte as a cell type of concern in the regulation of coronary microvascular function. Furthermore, our data provide preliminary evidence that thalidomide may prevent cardiotoxicity in sunitinib-treated cancer patients.
PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-β expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to loadinduced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-β signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-β was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-β is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.
Recent observations demonstrated that translation of mRNAs may occur in axonal processes at sites that are long distances away from the neuronal perikaria. While axonal protein synthesis has been documented in several studies, the mechanism of its regulation remains unclear. The aim of this study was to investigate whether RNA interference (RNAi) may be one of the pathways that control local protein synthesis in axons. Here we show that sciatic nerve contains Argonaute2 nuclease, fragile X mental retardation protein, p100 nuclease, and Gemin3 helicase-components of the RNA-induced silencing complex (RISC). Application of short-interfering RNAs against neuronal beta-tubulin to the sciatic nerve initiated RISC formation, causing a decrease in levels of neuronal beta-tubulin III mRNA and corresponding protein, as well as a significant reduction in retrograde labeling of lumbar motor neurons. Our observations indicate that RNAi is functional in peripheral mammalian axons and is independent from the neuronal cell body or Schwann cells. We introduce a concept of local regulation of axonal translation via RNAi.
This study demonstrates the induction of the VEGF accompanied by a reduction of NF-kappaB activity (inflammatory signaling) by PPAR-gamma agonists in cardiac myoFb. These results may further the understanding of the beneficial effects of PPAR-gamma agonists on infarcted tissue repair and angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.