Connected and Automated Vehicles (CAVs) are one of the emerging technologies in the automotive domain that has the potential to alleviate the issues of accidents, traffic congestion, and pollutant emissions, leading to a safe, efficient, and sustainable transportation system. Machine learningbased methods are widely used in CAVs for crucial tasks like perception, motion planning, and motion control, where machine learning models in CAVs are solely trained using the local vehicle data, and the performance is not certain when exposed to new environments or unseen conditions. Federated learning (FL) is an effective solution for CAVs that enables a collaborative model development with multiple vehicles in a distributed learning framework. FL enables CAVs to learn from a wide range of driving environments and improve their overall performance while ensuring the privacy and security of local vehicle data. In this paper, we review the progress accomplished by researchers in applying FL to CAVs. A broader view of the various data modalities and algorithms that have been implemented on CAVs is provided. Specific applications of FL are reviewed in detail, and an analysis of the challenges and future scope of research are presented.
A novel Decentralized Noisy Model Update Tracking Federated Learning algorithm (FedNMUT) is proposed that is tailored to function efficiently in the presence of noisy communication channels that reflect imperfect information exchange. This algorithm uses gradient tracking to minimize the impact of data heterogeneity while minimizing communication overhead. The proposed algorithm incorporates noise into its parameters to mimic the conditions of noisy communication channels, thereby enabling consensus among clients through a communication graph topology in such challenging environments. FedNMUT prioritizes parameter sharing and noise incorporation to increase the resilience of decentralized learning systems against noisy communications. Theoretical results for the smooth non-convex objective function are provided by us, and it is shown that the ϵ−stationary solution is achieved by our algorithm at the rate of O 1 √ T , where T is the total number of communication rounds. Additionally, via empirical validation, we demonstrated that the performance of FedNMUT is superior to the existing state-of-the-art methods and conventional parameter-mixing approaches in dealing with imperfect information sharing. This proves the capability of the proposed algorithm to counteract the negative effects of communication noise in a decentralized learning framework.Imperfect information exchange, such as noisy or quantized communication, has been examined in the context of average consensus algorithms within distributed frameworks. Yet, the ramifications of varying noise levels remain underexplored. Moreover, existing research, primarily focused on consensus issues, does not fully address the complex challenges encountered in contemporary decentralized optimization and learning paradigms [23], [24]. In contrast to Federated Learning (FL), where server assistance is common, Decentralized Federated Learning (DFL) operates without a central server, with each client acting autonomously, processing local Stochastic Gradient Descent (SGD) or its variants on its data and interacting directly with neighboring clients.In our previous paper [25], we performed a comparative study of three proposed algorithms for DFL under imperfect communication conditions, typified by noisy channels. These algorithms-FedNDL1, FedNDL2, and FedNDL3-differ in their handling of noise and parameter sharing, demonstrating varying degrees of resilience to communication noise. In this paper, we propose a novel algorithm that employs the Gradient Tracking method in DFL and compare its performance against the previously mentioned algorithms. C. Paper's ContributionsThis paper introduces a novel algorithm that employs the Gradient Tracking method in DFL, considering the impact of communication noise. Previous studies have evaluated the effectiveness of two-time scale methods in DFL with noisy channels. However, these investigations were limited by inflexible assumptions such as strong convexity in papers such as [26]- [29]. These assumptions are rarely satisfied in practi...
Decentralized learning and optimization is a central problem in control that encompasses several existing and emerging applications, such as federated learning. While there exists a vast literature on this topic and most methods centered around the celebrated average-consensus paradigm, less attention has been devoted to scenarios where the communication between the agents may be imperfect. To this end, this paper presents three different algorithms of Decentralized Federated Learning (DFL) in the presence of imperfect information sharing modeled as noisy communication channels. The first algorithm, Federated Noisy Decentralized Learning (FedNDL1), comes from the literature, where the noise is added to their parameters to simulate the scenario of the presence of noisy communication channels. This algorithm shares parameters to form a consensus with the clients based on a communication graph topology through a noisy communication channel. The proposed second algorithm ( FedNDL2) is similar to the first algorithm but with added noise to the parameters, and it performs the gossip averaging before the gradient optimization. The proposed third algorithm (FedNDL3), on the other hand, shares the gradients through noisy communication channels instead of the parameters. Theoretical and experimental results demonstrate that under imperfect information sharing, the third scheme that mixes gradients is more robust in the presence of a noisy channel compared with the algorithms from the literature that mix the parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.