The CLI-NLP algorithm for identification of CLI from narrative clinical notes in an EHR had excellent PPV and has potential for translation to patient care as it will enable automated identification of CLI cases for quality projects, clinical decision support tools and support a learning healthcare system.
Key Points Question Are ankle-brachial indices associated with limb outcomes in community-dwelling patients with peripheral artery disease as identified by computational approaches applied to electronic health records? Findings In this cohort study of 1413 community-dwelling patients, peripheral artery disease was identified and limb outcomes were retrieved by computational approaches applied to electronic health records. Ankle-brachial indices of 1.4 or greater were associated with limb amputation and ankle-brachial indices less than 0.5 were associated with limb revascularization. Meaning Severe disease and poorly compressible arteries detected by ankle-brachial indices were associated with adverse outcomes in community-dwelling patients with peripheral artery disease; ascertainment of peripheral artery disease phenotypes and outcomes by computational approaches applied to electronic health records is feasible.
Background Automated individualized risk prediction tools linked to electronic health records ( EHR s) are not available for management of patients with peripheral arterial disease. The goal of this study was to create a prognostic tool for patients with peripheral arterial disease using data elements automatically extracted from an EHR to enable real‐time and individualized risk prediction at the point of care. Methods and Results A previously validated phenotyping algorithm was deployed to an EHR linked to the Rochester Epidemiology Project to identify peripheral arterial disease cases from Olmsted County, MN, for the years 1998 to 2011. The study cohort was composed of 1676 patients: 593 patients died over 5‐year follow‐up. The c‐statistic for survival in the overall data set was 0.76 (95% confidence interval [CI], 0.74–0.78), and the c‐statistic across 10 cross‐validation data sets was 0.75 (95% CI, 0.73–0.77). Stratification of cases demonstrated increasing mortality risk by subgroup (low: hazard ratio, 0.35 [95% CI, 0.21–0.58]; intermediate‐high: hazard ratio, 2.98 [95% CI, 2.37–3.74]; high: hazard ratio, 8.44 [95% CI, 6.66–10.70], all P <0.0001 versus the reference subgroup). An equation for risk calculation was derived from Cox model parameters and β estimates. Big data infrastructure enabled deployment of the real‐time risk calculator to the point of care via the EHR . Conclusions This study demonstrates that electronic tools can be deployed to EHR s to create automated real‐time risk calculators to predict survival of patients with peripheral arterial disease. Moreover, the prognostic model developed may be translated to patient care as an automated and individualized real‐time risk calculator deployed at the point of care.
Objective To quantify compliance with guideline recommendations for secondary prevention in peripheral artery disease (PAD) using natural language processing (NLP) tools deployed to an electronic health record (EHR) and investigate provider opinions regarding clinical decision support (CDS) to promote improved implementation of these strategies. Patients and Methods Natural language processing was used for automated identification of moderate to severe PAD cases from narrative clinical notes of an EHR of patients seen in consultation from May 13, 2015, to July 27, 2015. Guideline-recommended strategies assessed within 6 months of PAD diagnosis included therapy with statins, antiplatelet agents, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, and smoking abstention. Subsequently, a provider survey was used to assess provider knowledge regarding PAD clinical practice guidelines, comfort in recommending secondary prevention strategies, and potential role for CDS. Results Among 73 moderate to severe PAD cases identified by NLP, only 12 (16%) were on 4 guideline-recommended strategies. A total of 207 of 760 (27%) providers responded to the survey; of these 141 (68%) were generalists and 66 (32%) were specialists. Although 183 providers (88%) managed patients with PAD, 51 (25%) indicated they were uncomfortable doing so; 138 providers (67%) favored the development of a CDS system tailored for their practice and 146 (71%) agreed that an automated EHR-derived mortality risk score calculator for patients with PAD would be helpful. Conclusion Natural language processing tools can identify cases from EHRs to support quality metric studies. Findings of this pilot study demonstrate gaps in application of guideline-recommended strategies for secondary risk prevention for patients with moderate to severe PAD. Providers strongly support the development of CDS systems tailored to assist them in providing evidence-based care to patients with PAD at the point of care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.