The brain, protected by the cranium externally and the blood-brain barrier (BBB) internally, poses challenges in chemotherapy of aggressive brain tumors. Maximal tumor resection followed by radiation and chemotherapy is the standard treatment protocol; however, a substantial number of patients suffer from recurrence. Systemic circulation of drugs causes myelodysplasia and other side effects. To address these caveats, we report facile synthesis of a polyester-based supramolecular hydrogel as a brain biocompatible implant for in situ delivery of hydrophobic drugs. Methods: Polycaprolactone-diol (PCL) was linked to polyethyleneglycol-diacid (PEG) via an ester bond. In silico modeling indicated micelle-based aggregation of PCL-PEG co-polymer to form a supramolecular hydrogel. Brain biocompatibility was checked in Sprague Dawley rat brain cortex with MRI, motor function test, and histology. Model hydrophobic drugs carmustine and curcumin entrapment propelled glioma cells into apoptosis-based death evaluated by in vitro cytotoxicity assays and Western blot. In vivo post-surgical xenograft glioma model was developed in NOD-SCID mice and evaluated for efficacy to restrict aggressive regrowth of tumors. Results: 20% (w/v) PCL-PEG forms a soft hydrogel that can cover the uneven and large surface area of a tumor resection cavity and maintain brain density. The PCL-PEG hydrogel was biocompatible, and well-tolerated upon implantation in rat brain cortex, for a study period of 12 weeks. We report for the first time the combination of carmustine and curcumin entrapped as model hydrophobic drugs, increasing their bioavailability and yielding synergistic apoptotic effect on glioma cells. Further in vivo study indicated PCL-PEG hydrogel with a dual cargo of carmustine and curcumin restricted aggressive regrowth post-resection significantly compared with control and animals with intravenous drug treatment. Conclusion: PCL-PEG soft gel-based implant is malleable compared with rigid wafers used as implants, thus providing larger surface area contact. This stable, biocompatible, supramolecular gel without external crosslinking can find wide applications by interchanging formulation of various hydrophobic drugs to ensure and increase site-specific delivery, avoiding systemic circulation.
Chandipura virus (CHPV) is an emerging human pathogen of great clinical significance. In this study, we have investigated the susceptibility pattern of both normal and cancer cell lines of human origin to wild-type (wt) CHPV in order to explore the possibility of developing CHPV as an oncolytic vector (OV). Marked cytopathic effect along with enhanced virus output was observed in cancer cell lines (HeLa, A549, U-138, PC-3, and HepG2) in comparison to normal human adult dermal fibroblast (HADF) cells. At an MOI of 0.1, cancer cell lines were differentially susceptible to CHPV, with cells like HeLa and U-138 having pronounced cell death, while the PC-3 were comparatively resistant. All cell lines used in the study except U-138 restricted CHPV infection to varying degrees with IFN-β pre-treatment and supplementation of interferon (IFN) could neither activate the IFN signaling pathway in U-138 cells. Finally, U-138 tumor xenografts established in non-obese diabetic severe combined immunodeficiency (NOD/SCID) mice showed significant delay in tumor growth in the CHPV-challenged animals. Thus, targeted cytopathic effect in cancer cells at a very low dose with restricted replication in normal cells offers a rationale to exploit CHPV as an oncolytic vector in the future.
Notch signaling and its downstream target, HES1, play a critical role in regulating and maintaining cancer stem cells (CSCs), similar to embryonic development. Here, we report a unique subclass of Notch Independent Hes-1(NIHes-1) expressing Cancer Stem Cells (CSCs) in neuroblastoma. These CSCs maintain sustained HES1 expression by activation of HES1 promoter region upstream of classical CBF-1 binding sites thereby, completely bypassing Notch receptor mediated activation. These stem cells have self-renewal ability and potential to generate tumor. Interestingly, we observed that NIHes-1 CSCs could transit to Notch dependent Hes-1 expressing (NDHes-1) CSCs where HES1 is expressed by Notch receptor mediated promoter activation. We observed that NDHes-1 expressing CSCs also had the potential to transit to NIHes-1 CSCs and during this coordinated bidirectional transition, both CSCs gave rise to the majority of the bulk cancer cells, which had HES1 promoter inactive (PIHes-1). A few of these PIHes-1 cells were capable of reverting to a CSC state. These findings explain the existence of heterogenic mode of Hes-1 promoter activation within IMR-32 and the potential to switch between them.
BRCA1 mutation is reported in about 70% of all triple negative breast cancers (TNBC), while BRCA1 defect due to promoter hypermethylation is seen in about 30%–60% of sporadic breast cancers. Although PARP inhibitors and platinum‐based chemotherapy are used to treat these cancers, more efficient therapeutic approaches are required to overcome the resistance to treatment. Our previous findings have reported elevated βhCG expression but not αhCG in BRCA1 deficient breast cancers. As βhCG causes immune suppression in pregnancy, this study explored the immunomodulatory effect of βhCG in BRCA1mutated/deficient TNBC. We observed that Th1, Th2, and Th17 cytokines are upregulated in the presence of βhCG in BRCA1 defective cancers. In NOD‐SCID and syngeneic mouse models, βhCG increases the frequency of Myeloid‐derived suppressor cells in tumour tissues and contributes to macrophage reprogramming from antitumor M1 to pro‐tumour M2 phenotype. βhCG reduces the CD4+T‐cell infiltration while increasing the density of CD4+CD25+FOXP3+regulatory T‐cell in BRCA1 deficient tumour tissues. In contrast, xenograft tumours with βhCG knocked down TNBC cells did not show these immune suppressive effects. We have also shown that βhCG upregulates pro‐tumorigenic markers arginase1(Arg1), inducible nitric oxide synthase, PD‐L1/PD‐1, and NFκB in BRCA1 defective tumours. Thus, for the first time, this study proves that βhCG suppresses the host antitumor immune response and contributes to tumour progression in BRCA1 deficient tumours. This study will help develop new immunotherapeutic approaches for treating BRCA1 defective TNBC by regulating βhCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.