Pooled genetic analysis revealed an association of SNPs in PNPLA3, PARVB, SAMM50 and PZP genes with NAFLD. SNPs in NCAN and PNPLA3 gene were associated with higher levels of ALT, whereas variant SNPs in APOC3, PNPLA3, EFCAB4B and COL13A1 were associated with high triglyceride levels.
Introduction and objectivePolymorphisms in genes encoding drug metabolizing enzymes may lead to varied enzyme activity and inter-individual variability in drug efficacy and/or toxicity. Since CYP2C19 and CYP3A4 genes code for enzymes involved in metabolizing wide variety of drugs including proton pump inhibitors, we sought to identify polymorphisms in these genes in order to study their impact on drug metabolism in subjects.MethodsDNA was isolated from healthy individuals including tribals and genotyped for 11 single nucleotide polymorphisms in CYP2C19 and 6 polymorphisms in CYP3A4. Individuals were categorized into different phenotypes based on their drug metabolizing genotype. Volunteers from each group were administered proton pump inhibitors (Esomeprazole, Pantoprazole; 40 mg/day) for 5 days followed by pharmacokinetic studies and measurement of intra-gastric pH.ResultsOf the 17 polymorphisms studied, only CYP2C19*2,*3,*17 and CYP3A4*1B polymorphisms were observed. In comparison to urban individuals, a significantly (p = 0.0003) higher number of poor metabolizers were noted in the tribal individuals. Pantoprazole was found to be most effective in poor metabolizers in terms of area under the curve and Tmax. No significant difference was observed in the intra-gastric pH at baseline and day 6 in rapid and ultra-rapid metabolizers.ConclusionOur study has demonstrated that 19.7% of our subjects are carriers of the CYP2C19*17 allele who did not respond to the standard dose of proton pump inhibitors. Genetic screening to identify subjects with variant alleles would thus be useful for personalization of therapy with proton pump inhibitors.
Genetics plays an important role in determining the susceptibility of an individual to develop a disease. Complex, multi factorial diseases of modern day (diabetes, cardiovascular disease, hypertension and obesity) are a result of disparity between the type of food consumed and genes, suggesting that food which does not match the host genes is probably one of the major reasons for developing life style diseases. Non-alcoholic fatty liver is becoming a global epidemic leading to substantial morbidity. While various genotyping approaches such as whole exome sequencing using next generation sequencers and genome wide association studies have identified susceptibility loci for non-alcoholic fatty liver disease (NAFLD) including variants in patatin-like phospholipase domain containing 3 and transmembrane 6 superfamily member 2 genes apart from others; nutrient based studies emphasized on a combination of vitamin D, E and omega-3 fatty acids to manage fatty liver disease. However majority of the studies were conducted independent of each other and very few studies explored the interactions between the genetic susceptibility and nutrient interactions. Identifying such interactions will aid in optimizing the nutrition tailor made to an individual's genetic makeup, thereby aiding in delaying the onset of the disease and its progression. The present topic focuses on studies that identified the genetic susceptibility for NAFLD, nutritional recommendations, and their interactions for better management of NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.