Highlights
We analysed over 320 COVID-19 images and 320 healthy control images.
We proposed an improved CNN to extract individual image-level features.
We proposed to use GCN to extract relation-aware representations.
We proposed a DFF technology to combine features from GCN and CNN.
The proposed FCGNet gives better performance than 15 state-of-the-art approaches.
Aim) To make a more accurate and precise COVID-19 diagnosis system, this study proposed a novel deep rank-based average pooling network (DRAPNet) model, i.e., deep rank-based average pooling network, for COVID-19 recognition. (Methods) 521 subjects yield 1164 slice images via the slice level selection method. All the 1164 slice images comprise four categories: COVID-19 positive; community-acquired pneumonia; second pulmonary tuberculosis; and healthy control. Our method firstly introduced an improved multiple-way data augmentation. Secondly, an n-conv rankbased average pooling module (NRAPM) was proposed in which rank-based pooling-particularly, rank-based average pooling (RAP)-was employed to avoid overfitting. Third, a novel DRAPNet was proposed based on NRAPM and inspired by the VGG network. Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis. (Results) Our DRAPNet achieved a micro-averaged F1 score of 95.49% by 10 runs over the test set. The sensitivities of the four classes were 95.44%, 96.07%, 94.41%, and 96.07%, respectively. The precisions of four classes were 96.45%, 95.22%, 95.05%, and 95.28%, respectively. The F1 scores of the four classes were 95.94%, 95.64%, 94.73%, and 95.67%, respectively. Besides, the confusion matrix was given. (Conclusions) The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases. The RAP gives better results than four other methods: strided convolution, l 2 -norm pooling, average pooling, and max pooling.
Tissues in brain are the most complicated parts of our body, a clear examination and study are therefore required by a radiologist to identify the pathologies. Normal magnetic resonance (MR) scanner is capable of producing brain images with bounded tissues, where unique and segregated views of the tissues are required. A distinguished view upon the images is manually impossible and can be subjected to operator errors. With the assistance of a soft computing technique, an automated unique segmentation upon the brain tissues along with the identification of the tumor region can be effectively done. These functionalities assist the radiologist extensively. Several soft computing techniques have been proposed and one such technique which is being proposed is PSO‐based FCM algorithm. The results of the proposed algorithm is compared with fuzzy C‐means (FCM) and particle swarm optimization (PSO) algorithms using comparison factors such as mean square error (MSE), peak signal to noise ratio (PSNR), entropy (energy function), Jaccard (Tanimoto Coefficient) index, dice overlap index and memory requirement for processing the algorithm. The efficiency of the PSO‐FCM algorithm is verified using the comparison factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.