BackgroundInfectious disease is the leading cause of death worldwide, and diagnosis of polymicrobial and fungal infections is increasingly challenging in the clinical setting. Conventionally, molecular detection is still the best method of species identification in clinical samples. However, the limitations of Sanger sequencing make diagnosis of polymicrobial infections one of the biggest hurdles in treatment. The development of massively parallel sequencing or next generation sequencing (NGS) has revolutionized the field of metagenomics, with wide application of the technology in identification of microbial communities in environmental sources, human gut and others. However, to date there has been no commercial application of this technology in infectious disease diagnostic settings.MethodsCredence Genomics Rapid Infection Detection™ test, is a molecular based diagnostic test that uses next generation sequencing of bacterial 16S rRNA gene and fungal ITS1 gene region to provide accurate identification of species within a clinical sample. Here we present a study comparing 16S and ITS1 metagenomic identification against conventional culture for clinical samples. Using culture results as gold standard, a comparison was conducted using patient specimens from a clinical microbiology lab.ResultsMetagenomics based results show a 91.8% concordance rate for culture positive specimens and 52.8% concordance rate with culture negative samples. 10.3% of specimens were also positive for fungal species which was not investigated by culture. Specificity and sensitivity for metagenomics analysis is 91.8 and 52.7% respectively.Conclusion 16S based metagenomic identification of bacterial species within a clinical specimen is on par with conventional culture based techniques and when coupled with clinical information can lead to an accurate diagnostic tool for infectious disease diagnosis.Electronic supplementary materialThe online version of this article (10.1186/s12879-017-2727-8) contains supplementary material, which is available to authorized users.
Leishmania donovani is the known causative agent of both cutaneous (CL) and visceral leishmaniasis in Sri Lanka. CL is considered to be under-reported partly due to relatively poor sensitivity and specificity of microscopic diagnosis. We compared robustness of three previously described polymerase chain reaction (PCR) based methods to detectLeishmania DNA in 38 punch biopsy samples from patients presented with suspected lesions in 2010. Both, Leishmaniagenus-specific JW11/JW12 KDNA and LITSR/L5.8S internal transcribed spacer (ITS)1 PCR assays detected 92% (35/38) of the samples whereas a KDNA assay specific forL. donovani (LdF/LdR) detected only 71% (27/38) of samples. All positive samples showed a L. donovani banding pattern upon HaeIII ITS1 PCR-restriction fragment length polymorphism analysis. PCR assay specificity was evaluated in samples containing Mycobacterium tuberculosis, Mycobacterium leprae, and human DNA, and there was no cross-amplification in JW11/JW12 and LITSR/L5.8S PCR assays. The LdF/LdR PCR assay did not amplify M. leprae or human DNA although 500 bp and 700 bp bands were observed in M. tuberculosis samples. In conclusion, it was successfully shown in this study that it is possible to diagnose Sri Lankan CL with high accuracy, to genus and species identification, using Leishmania DNA PCR assays.
Although the strain causing cutaneous leishmaniasis (CL) in Sri Lanka was first identified in 2003, the strain causing visceral leishmaniasis (VL) has not yet been identified. We report the first isoenzyme typing of a strain causing VL in Sri Lanka at an early stage of emergence of VL in the country. The parasite was isolated from a 57-year-old civil soldier who had been in the jungle in the Vavuniya district in the Northern Province of Sri Lanka for a period of nearly 6 months immediately before the onset of symptoms. Multilocus enzyme electrophoresis (MLEE) revealed that the strain is Leishmania donovani zymodeme MON-37, the zymodeme which was previously identified from the CL patients in the country. The MLEE analysis was confirmed by sequencing the gene encoding the 6-phosphogluconate dehydrogenase isoenzyme. This is an instance of the same Leishmania zymodeme associated with both dermotropism and viscerotropism in the same geographic region. Further investigations into the genetic structure and identification of virulence factors in the parasite and immune factors in the host are required to understand the factors responsible for different tropism shown by the same zymodeme MON-37 L. donovani from Sri Lanka.
BackgroundPolycystic ovary syndrome (PCOS), the commonest endocrine disorder affecting young women, appears to be a multigenic trait with contributing genes being unclear. Hence, analysis of polymorphisms in multiple candidate genes is required. Currently available genotyping methods are expensive, time-consuming with limited analytical sensitivity.Aim(i) Develop and validate high resolution melting (HRM) assay and allele-specific real-time quantitative PCR (AS-qPCR) for genotyping selected SNPs associated with PCOS.(ii) Identify selected SNPs and their association with a Sri Lankan cohort of well-characterized PCOS.MethodsDNA was extracted from women with well-characterized PCOS from adolescence (n = 55) and ethnically matched controls (n = 110). FTO (Fat mass and obesity associated gene; rs9939609), FSHB (Follicle stimulating hormone beta subunit; rs6169), FSHR (Follicle stimulating hormone receptor; rs6165/rs6166), and INSR (Insulin receptor; rs1799817) genes were genotyped using HRM assay. GnRH1 (Gonadotropin releasing hormone; rs6185), LHB (Luteinizing hormone beta subunit; rs1800447/rs34349826) and LHCGR (Luteinizing hormone/choriogonadotropin receptor; rs2293275) genes were genotyped using AS-qPCR method. Genotyping results were validated using Sanger sequencing.ResultsA significant association was observed within FTO gene polymorphism (rs9939609) and PCOS. Genotype frequency of FTO gene (rs9939609)—cases versus controls were TT-36.4% vs.65.4% (p<0.05), AT-23.6% vs.20.9%, AA-40% vs.13.6% (p<0.05). Genotype frequencies of the SNPs GnRH1 (rs6185), FSHB (rs6169), FSHR (rs6165 & rs6166), LHB (rs1800447 & rs34349826), LHCGR (rs2293275) and INSR (rs1799817) were not significantly different between cases and controls (p>0.05). Only the mutant alleles were observed for LHB rs1800447 and rs34349826 SNPs in both groups. The HRM and AS-qPCR assay results had 100% concordance with sequencing results.ConclusionsFTO gene rs9939609 polymorphism is significantly more prevalent among Sri Lankan PCOS subjects while the other selected SNPs of HPG axis genes and INSR gene showed no association. HRM and AS-qPCR assays provide a reliable, fast and user-friendly genotyping method facilitating wider implication in clinical practice.
Background: Paroxysms are recurrent febrile episodes, characteristic of Plasmodium vivax infections, which coincide with the rupture of schizont-infected erythrocytes in the patients' circulation. The present study describes the formation of prominent aggregates of leukocytes in vitro in the presence of parasite and host factors released during paroxysms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.