Extended surfaces are widely investigated for their ability to enhance the heat transfer rates in different applications. Pin-fin and plate-fin heat sinks are used in a variety of cases involving a miniaturized to the large systems. The present study compares the performance of the pin-fin and the plate-fin heat sink under similar forced flow conditions. The experimental data for a modified pin fin heat sink with wings and a plate-fin heat sink with dimples are collected for the Reynolds number in the range of 6800–15100. The Nusselt number, friction factor, and thermo-hydraulic performance (THP) are examined for different geometries of the heat sink and the enhancements brought out in the heat transfer and friction are gauged relative to the smooth plate. The pin fin heat sink yields two-fold enhancement in heat transfer as compared to the plate-fin heat sink. The maximum thermo-hydraulic performance of the pin-fin heat sink with wings is found to be 4.52 at a pitch ratio (S/Df) of 2 and Wing length ratio (Lw/Df). For the plate fin heat sink with dimples, the maximum thermo-hydraulic performance is found to be 4.67 at dimple diameter ratio (D/d) of 0.5 and dimple pitch ratio (s/d) of 2.5. The correlations of the Nusselt number and friction factor are proposed for different geometries of fins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.