This study assessed the influence of rapid 3 s light curing on the new generation of bulk-fill resin composites under the simulated aging challenge and depths up to 4 mm. Four bulk-fill materials were tested: two materials designed for rapid curing (Tetric PowerFill—PFILL; Tetric PowerFlow—PFLW) and two regular materials (Filtek One Bulk Fill Restorative—FIL; SDR Plus Bulk Fill Flowable—SDR). Three-point bending (n = 10) was used to measure flexural strength (FS) and flexural modulus (FM). In the 3 s group, two 2 mm thick specimens were stacked to obtain 4 mm thickness, while 2 mm-thick specimens were used for ISO group. Specimens were aged for 1, 30, or 30 + 3 days in ethanol. The degree of conversion (DC) up to 4 mm was measured by Raman spectroscopy. There was no difference between curing protocols in FS after 1 day for all materials except PFLW. FM was higher for all materials for ISO curing protocol. Mechanical properties deteriorated by increasing depth (2–4 mm) and aging. ISO curing induced higher DC for PFLW and FIL, while 3 s curing was sufficient for PFILL and SDR. The 3 s curing negatively affected FM of all tested materials, whereas its influence on FS and DC was highly material-specific.
Experimental dental resin composites incorporating copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were designed to impart antibacterial and remineralizing properties. The study evaluated the influence of Cu-MBGN on the mechanical properties and photopolymerization of resin composites. Cu-MBGN were synthesized using a microemulsion-assisted sol–gel method. Increasing amounts of Cu-MBGN (0, 1, 5, and 10 wt %) were added to the organic polymer matrix with inert glass micro- and nanofillers while maintaining a constant resin/filler ratio. Six tests were performed: X-ray diffraction, scanning electron microscopy, flexural strength (FS), flexural modulus (FM), Vickers microhardness (MH), and degree of conversion (DC). FS and MH of Cu-MBGN composites with silica fillers showed no deterioration with aging, with statistically similar results at 1 and 28 days. FM was not influenced by the addition of Cu-MBGN but was reduced for all tested materials after 28 days. The specimens with 1 and 5% Cu-MBGN had the highest FS, FM, MH, and DC values at 28 days, while controls with 45S5 bioactive glass had the lowest FM, FS, and MH. DC was high for all materials (83.7–93.0%). Cu-MBGN composites with silica have a potential for clinical implementation due to high DC and good mechanical properties with adequate resistance to aging.
We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added Cu-MBGN or a combination of Cu-MBGN and silanised silica to the silanised barium glass base, and examined nine parameters: light transmittance, degree of conversion (DC), maximum polymerisation rate (Rmax), time to reach Rmax, linear shrinkage, shrinkage stress (PSS), maximum PSS rate, time to reach maximum PSS rate, and depth of cure. Cu-MBGN without silica accelerated polymerisation, reduced light transmission, and had the highest DC (58.8 ± 0.9%) and Rmax (9.8 ± 0.2%/s), but lower shrinkage (3 ± 0.05%) and similar PSS (0.89 ± 0.07 MPa) versus the inert reference (0.83 ± 0.13 MPa). Combined Cu-MBGN and silica slowed the Rmax and achieved a similar DC but resulted in higher shrinkage. However, using a combined 5 wt.% Cu-MBGN and silica, the PSS resembled that of the inert reference. The synergistic action of 5 wt.% Cu-MBGN and silanised silica in combination with silanised barium glass resulted in a material with the highest likelihood for dental applications in future.
Operative Dentistry, 2007, 32-3, 266-272 Clinical RelevanceHolographic interferometry offers precise insight into both the frequency and location of cohesive fractures through its fringe information. If flowable composites are not used as a first layer, fringe distribution indicates cohesive fractures as a consequence of composite polymerization. SUMMARYThis study determined whether it was possible to detect deformations and fractures in dental hard tissues or in composite material from internal stresses using double-exposure holographic interferometry. On the proximal side of eight intact human permanent premolars, a direct Class II cavity was prepared and restored with a self-etching adhesive (Clearfil SE Bond) and Tetric Ceram, a resin composite. In five of the specimens, Tetric Flow was used as an elastic layer. The samples were illuminated using a helium-neon laser beam, and the holograms of samples were recorded using Agfa 10E75 photographic plates. Hologram reconstructions were captured with an 8-bit monochrome CCD camera and qualitatively analyzed. Deformations and fractures appeared as fringe patterns on all interferograms, where the distribution of fringes provided location information, while the density of fringes gave the amplitude information. Greater fringe densities were observed in samples treated without a flowable composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.