Concrete is a material exhibiting high compressive strength but about tenfold lower tensile strength. Its brittle property also prohibits the transmission of stresses after cracking. Thus, steel, polymer, polypropylene, glass, carbon, and other fibers are added to concrete to form fiber-reinforced concretes (FRC) having enhanced mechanical properties. The utilization of fiber-reinforced concrete is widespread. Identifying the mechanical properties of fiber-reinforced cement composites under dynamic loading, establishing relationships between their composition, structure, and properties, justifying the correct mathematical model, and determining its parameters are challenging. Utilizing finite elemental modeling and analysis to comprehend the mechanical characteristics of the FRC addition to concrete bricks has shown considerable benefit. In the present study, polypropylene microfibers are included in fiber-reinforced concrete composites, and their performance is compared to that of unreinforced concrete bricks. Under FEA analysis, three-point bending and uniaxial tensile tests were conducted. The results indicate that using fiber reinforcements increases the tensile strength and endurance of the brick.
Concrete is a material exhibiting high compressive strength but about tenfold lower tensile strength. Its brittle property also prohibits the transmission of stresses after cracking. Thus, steel, polymer, polypropylene, glass, carbon, and other fibers are added to concrete to form fiber-reinforced concretes (FRC) having enhanced mechanical properties. The utilization of fiber-reinforced concrete is widespread. Identifying the mechanical properties of fiber-reinforced cement composites under dynamic loading, establishing relationships between their composition, structure, and properties, justifying the correct mathematical model, and determining its parameters are challenging. Utilizing finite elemental modeling and analysis to comprehend the mechanical characteristics of the FRC addition to concrete bricks has shown considerable benefit. In the present study, polypropylene microfibers are included in fiber-reinforced concrete composites, and their performance is compared to that of unreinforced concrete bricks. Under FEA analysis, three-point bending and uniaxial tensile tests were conducted. The results indicate that using fiber reinforcements increases the tensile strength and endurance of the brick.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.