We present a robust salient region detection framework based on the color and orientation distribution in images. The proposed framework consists of a color saliency framework and an orientation saliency framework. The color saliency framework detects salient regions based on the spatial distribution of the component colors in the image space and their remoteness in the color space. The dominant hues in the image are used to initialize an expectation-maximization (EM) algorithm to fit a Gaussian mixture model in the hue-saturation (H-S) space. The mixture of Gaussians framework in H-S space is used to compute the inter-cluster distance in the H-S domain as well as the relative spread among the corresponding colors in the spatial domain. Orientation saliency framework detects salient regions in images based on the global and local behavior of different orientations in the image. The oriented spectral information from the Fourier transform of the local patches in the image is used to obtain the local orientation histogram of the image. Salient regions are further detected by identifying spatially confined orientations and with the local patches that possess high orientation entropy contrast. The final saliency map is selected as either color saliency map or orientation saliency map by automatically identifying which of the maps leads to the correct identification of the salient region. The experiments are carried out on a large image database annotated with "ground-truth" salient regions, provided by Microsoft Research Asia, which enables us to conduct robust objective level comparisons with other salient region detection algorithms.
We formulate the problem of salient object detection in images as an automatic labeling problem on the vertices of a weighted graph. The seed (labeled) nodes are first detected using Markov random walks performed on two different graphs that represent the image. While the global properties of the image are computed from the random walk on a complete graph, the local properties are computed from a sparse k-regular graph. The most salient node is selected as the one which is globally most isolated but falls on a locally compact object. A few background nodes and salient nodes are further identified based upon the random walk based hitting time to the most salient node. The salient nodes and the background nodes will constitute the labeled nodes. A new graph representation of the image that represents the saliency between nodes more accurately, the "pop-out graph" model, is computed further based upon the knowledge of the labeled salient and background nodes. A semisupervised learning technique is used to determine the labels of the unlabeled nodes by optimizing a smoothness objective label function on the newly created "pop-out graph" model along with some weighted soft constraints on the labeled nodes.
. Significance: Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. Aim: Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. Approach: The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. Results: We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. Conclusions: The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.
We formulate the problem of salient region detection in images as Markov random walks performed on images represented as graphs. While the global properties of the image are extracted from the random walk on a complete graph, the local properties are extracted from a k-regular graph. The most salient node is selected as the one which is globally most isolated but falls on a compact object. The equilibrium hitting times of the ergodic Markov chain holds the key for identifying the most salient node. The background nodes which are farthest from the most salient node are also identified based on the hitting times calculated from the random walk. Finally, a seeded salient region identification mechanism is developed to identify the salient parts of the image. The robustness of the proposed algorithm is objectively demonstrated with experiments carried out on a large image database annotated with 'ground-truth' salient regions.
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning-based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, and so on, in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as user stays neutral for majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this paper, we propose a light-weight neutral versus emotion classification engine, which acts as a pre-processer to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at key emotion (KE) points using a statistical texture model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a statistical texture model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves emotion recognition (ER) accuracy and simultaneously reduces computational complexity of the ER system, as validated on multiple databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.