Recent literature suggests that exogenous zinc can prevent ischemia reperfusion injury by activating phosphoinositide-3 kinase (PI3K)/Akt and by targeting the mitochondrial permeability transition pore (mPTP). It is known that ErbB2 expression promotes association and activation of PI3-kinase/Akt, resulting in growth and survival of cardiac myocytes. In this study, we found that zinc-induced ErbB2 protein expression and Akt activation are required for preventing reperfusion injury. Neonatal rat cardiac myocytes subjected to 8 h of hypoxia, followed by 16 h of reoxygenation induced cardiomyocyte apoptosis, as assessed by increased caspase-3 activity, annexin V staining and lowered MTT reduction and ATP levels. However, addition of zinc-pyrithione (ZPT) before onset of reoxygenation effectively lowered the apoptotic indices and restored the ATP levels. ZPT induced a significant increase in ErbB2 protein expression and Akt activation. Pretreatment with Hsp 90 inhibitor, geldanamycin or PI3-kinase inhibitor, wortmannin prevented the increase in ATP levels and abrogated the protective effect of zinc-pyrithione. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the ErbB2 protein expression and Akt activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.