The Convolutional Neural Networks (CNNs), in domains like computer vision, mostly reduced the need for handcrafted features due to its ability to learn the problem-specific features from the raw input data. However, the selection of dataset-specific CNN architecture, which mostly performed by either experience or expertise is a time-consuming and error-prone process. To automate the process of learning a CNN architecture, this paper attempts at finding the relationship between Fully Connected (FC) layers with some of the characteristics of the datasets. The CNN architectures, and recently datasets also, are categorized as deep, shallow, wide, etc. This paper tries to formalize these terms along with answering the following questions. (i) What is the impact of deeper/shallow architectures on the performance of the CNN w.r.t. FC layers?, (ii) How the deeper/wider datasets influence the performance of CNN w.r.t. FC layers?, and (iii) Which kind of architecture (deeper/shallower)is better suitable for which kind of (deeper/wider) datasets. To address these findings, we have performed experiments with three CNN architectures having different depths. The experiments are conducted by varying the number of FC layers. We used four widely used datasets including CIFAR-10, CIFAR-100, Tiny ImageNet, and CRCHistoPhenotypes to justify our findings in the context of image classification problem. The source code of this work is available at https://github.com/shabbeersh/Impact-of-FC-layers.
Information on social media comprises of various modalities such as textual, visual and audio. NLP and Computer Vision communities often leverage only one prominent modality in isolation to study social media. However, computational processing of Internet memes needs a hybrid approach. The growing ubiquity of Internet memes on social media platforms such as Facebook, Instagram, and Twitter further suggests that we can not ignore such multimodal content anymore. To the best of our knowledge, there is not much attention towards meme emotion analysis. The objective of this proposal is to bring the attention of the research community towards the automatic processing of Internet memes. The task Memotion analysis released approx 10K annotated memes-with human annotated labels namely sentiment(positive, negative, neutral), type of emotion(sarcastic,funny,offensive, motivation) and their corresponding intensity. The challenge consisted of three subtasks: sentiment (positive, negative, and neutral) analysis of memes, overall emotion (humor, sarcasm, offensive, and motivational) classification of memes, and classifying intensity of meme emotion. The best performances achieved were F 1 (macro average) scores of 0.35, 0.51 and 0.32, respectively for each of the three subtasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.