Fly ash samples from two South African coal-fired power stations were subjected to different leaching tests under alkaline and acidic conditions in an attempt to assess the effect of pH on the leachability of species from the fly ashes and also assess the potential impact of the fly ashes disposal on groundwater and the receiving environment. To achieve this, German Standard leaching (DIN-S4) and Acid Neutralization Capacity (ANC) tests were employed. Mineralogical characterization of the fresh fly ashes revealed mullite and quartz as the major mineral phases with minor peaks of CaO and calcite. Chemical characterization by X-ray fluorescence (XRF) spectrometry revealed that the two fly ashes are similar, and consist of SiO(2), Al(2)O(3), Fe(2)O(3) and CaO as the main components with Cr, Co, Ni, Cu, Zn, V and Pb as minor components. Ca, Mg, Na, K and SO(4) were significantly leached into solution under the two leaching conditions with the total amounts in ANC leachates higher than that of DIN-S4. This indicates that a large fraction of the soluble salts in unweathered fly ash are easily leached. These species represents the fraction that can be flushed off initially from the surface of ash particles on contacting the ash with water. Al and Si were only observed in the leachates of the ANC test. Results obtained from the total acid-digestion and DIN-S4 leaching test indicated some toxic elements in the fly ashes are not easily solubilized. The amounts of toxic trace elements such as As, Se, Cd, Cr and Pb leached out of the fly ashes when in contact with de-mineralized water (DIN-S4 test) were low and below the Target Water Quality Range (TWQR) of South Africa. This is explained by their low concentrations in the fly ashes and their solubility dependence on the pH of the leaching solution. However the amounts of some minor elements such as B, Mn, Fe, As and Se leached out at lower pH ranging between 10 to 4 (ANC test) were slightly higher than the TWQR, an indication that the pH of the leaching solution plays a significant role on the leaching of species in fly ash. The high concentrations of the toxic elements released from the fly ashes at lower pH gives an indication that the disposal of the fly ash could have adverse effects on the receiving environment if the pH of the solution contacting the ashes is not properly monitored. The study indicated that on contact with water in a disposal scenario fly ash will release high amounts of soluble species.
Recent studies have shown that a combination of coal fly ash (FA) and Al(OH) 3 can be used to treat neutral mine drainage (NMD) and reduce sulphate concentration to within South African drinking water quality levels, Class II (400-600 mg/L). The shortcomings of this method were the large amounts of FA required to raise the pH to greater than 11 (3:1 liquidto-solid ratio) so that Al(OH) 3 can be added to facilitate removal of sulphate ions through ettringite precipitation. This requires large silos to store FA, making upscaling of this treatment technology using normal mixing methods to be unrealistic. In the current study, a jet loop reactor was used to reduce the amount of FA needed to increase the pH to greater than 11. The pH was raised to greater than 11 by mixing 0.25 % of lime (w/v ratio) and 13 kg of coal FA with 80 L of NMD in a jet loop reactor. After the pH of the mixture was above 11, amorphous Al(OH) 3 (83.2 g) was added to the mixture. This resulted in the sulphate concentration decreasing to less than 500 mg/L. Bench-scale studies using 0.25 % (w/v) of lime and 6:1 coal mine water to FA ratio could not reduce the sulphate concentration to below 500 mg/L. Therefore, the impingement and cavitation mixing techniques that happen in a jet loop reactor played an important role in enhancing sulphate removal.
Fly Ash (FA) from a power station in South Africa was investigated to neutralise and remove contaminants from Acid Mine Drainage (AMD). After this primary treatment the insoluble FA residue namely solid residue (SR) was investigated as a suitable mine backfill material by means of strength testing. Moreover, SR was used to synthesise zeolite-P using a two-step synthesis procedure. Furthermore, the zeolite-P was investigated to polish process water from the primary FA-AMD reaction. The main objective of this series of investigations is to achieve zero waste and to propose an integrated AMD management using FA. Fly Ash was mixed with AMD at various predetermined FA-AMD ratios until the mixtures achieved circumneutral pH or higher. The supernatants were then analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Ion Chromatography (IC) for cations and anions respectively. The physical strength testing of SR was carried out by mixing it with 3% Ordinary Portland Cement (OPC) and curing for 410 days. Synthesis of zeolite-P using SR was carried out by two step synthesis procedure: ageing for 24 hours followed by a mild hydrothermal synthesis at 100°C for 4 days. The polishing of process water from primary AMD treatment using FA was ascertained by mixing the process water with zeolite at a liquid to solid ratio of 100:1 for 1 hour. The results indicated that FA can be successfully used to ameliorate AMD. High removal of major AMD contaminants Fe, Al, Mg, Mn and sulphate was achieved with the ash treatment and trace elements such as Zn, Ni, Cu and Pb were also removed by the FA. Strength testing over 410 days indicated that the material gained strength over the testing period. The maximum unconfined compressive strength and elastic modulus was observed to be approximately 0.3 MPa and 150 Mpa respectively. The X-ray diffraction (XRD) analysis of the synthesized product indicated that SR was successfully converted into zeolite-P with some mullite phase remaining as a result of incomplete conversion of the feedstock SR. The zeolite-P was used as an ion exchange material to remove selective elements from the process water. Elements such as Ca, Sr, Ba and V were successfully removed from the process water with the zeolite-P. Only marginal removal of Mo was observed during the experiments. It was also observed that Na was exchanged into the solution. This study successfully demonstrated zero waste concepts and an integrated AMD management scheme using FA was developed in this study. The implementation of this technology will address FA storage problem as well as costs associated with AMD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.