Ultrastructural and molecular phylogenetic evidence indicate that the Parabasalia consists of seven main subgroups: the Trichomonadida, Honigbergiellida, Hypotrichomonadida, Tritrichomonadida, Cristamonadida, Spirotrichonymphida, and Trichonymphida. Only five species of free-living parabasalids are known: Monotrichomonas carabina, Ditrichomonas honigbergii, Honigbergiella sp., Tetratrichomonas undula, and Pseudotrichomonas keilini. Phylogenetic analyses show that free-living species do not form a clade and instead branch in several different positions within the context of their parasitic relatives. Because the diversity of free-living parabasalids is poorly understood, the systematics of these lineages is in a significant state of disarray. In order to better understand the phylogenetic distribution of free-living parabasalids, we sequenced the small subunit rDNA from three different strains reminiscent of P. keilini; the strains were isolated from different geographical locations: (1) mangrove sediments in Japan and (2) sediments in Cyprus. These data demonstrated that the free-living parabasalids P. keilini and Lacusteria cypriaca n. g., n. sp., form a paraphyletic assemblage near the origin of a clade consisting mostly of parasitic trichomonadids (e.g. Trichomonas vaginalis). This paraphyletic distribution of similar morphotypes indicates that free-living trichomonadids represent a compelling example of morphostasis that provides insight into the suite of features present in the most recent free-living ancestor of their parasitic relatives.
We investigated intestinal trichomonads in western lowland gorillas, central chimpanzees and humans cohabiting the forest ecosystem of Dzanga-Sangha Protected Area in Central African Republic, using the internal transcribed spacer (ITS) region and SSU rRNA gene sequences. Trichomonads belonging to the genus Tetratrichomonas were detected in 23% of the faecal samples and in all host species. Different hosts were infected with different genotypes of Tetratrichomonas. In chimpanzees, we detected tetratrichomonads from ‘novel lineage 2’, which was previously reported mostly in captive and wild chimpanzees. In gorillas, we found two different genotypes of Tetratrichomonas. The ITS region sequences of the more frequent genotype were identical to the sequence found in a faecal sample of a wild western lowland gorilla from Cameroon. Sequences of the second genotype from gorillas were almost identical to sequences previously obtained from an anorexic French woman. We provide the first report of the presence of intestinal tetratrichomonads in asymptomatic, apparently healthy humans. Human tetratrichomonads belonged to the lineage 7, which was previously reported in domestic and wild pigs and a domestic horse. Our findings suggest that the ecology and spatial overlap among hominids in the tropical forest ecosystem has not resulted in exchange of intestinal trichomonads among these hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.