The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
DRECE - Dual Rolls Equal Channel Extrusion" (dual rolls pressure combined with equal channel extrusion) method is used for production of metallic materials with very fine grain size (hereinafter referred to as UFG structure - Ultrafine Grain Size). During the actual forming process the principle of severe plastic deformation is used. The device is composed of the following main parts: “Nord” type gearbox, electric motor with frequency speed converter, multi-plate clutch, feed roller and pressure rollers with regulation of thrust, and of the forming tool itself – made of Dievar steel type. Metallic strip with dimensions 58×2×1000 mm (width x thickness x length) is inserted into the device. During the forming process the main cylinder in synergy with the pressure roller extrude the material through the forming tool without any change of cross section of the strip. In this way a significant refinement of grain is achieved by severe plastic deformation. This method is used for various types of metallic materials, non-ferrous metals and their alloys. Forming process is based on extrusion technology with zero reduction of thickness of the sheet metal with the ultimate aim - achieving a high degree of deformation in the formed material. The DRECE device is also being verified from the viewpoint of achievement of a UFG structure in a blank of circular cross-section (wire) with diameter of ø 8 mm × 1000 mm (length).
ROZDROBNIENIE ZIARN STOPÓW AlMn1Cu I AZ 31 DO ROZMIARÓW ULTRAMETRYCZNYCH Z ZASTOSOWANIEM PROCESU SPDOne of the ways to the more effective use of metallic materials is their processing by forming. At present in this the area the use of the process of severe plastic deformation (SPD process), leading to a refinement of the structure (materials with UFG structure) and thus to achievement of higher level of their utility value, is expanding. AlMn1Cu alloy is commercially produced aluminum alloy by the company Al Invest Bridlicna (the cast strip with a mild reduction by rolling up to 10% to the thickness of 10 and 15 mm, which has its uses especially in engineering. AZ31 alloy is commercially produced aluminum alloy after casting and extrusion at 400• C on final rod with 20 mm diameter. For experimental purposes from the belts of alloys the test samples of the underlying dimensions of 10×10 mm length 40 mm (geometry with channel deflection 20• ) and 15×15 mm length 60 mm (geometry with helix matrix) in the direction of rolling were made. All three instruments are made of high tool steel -HOTVAR. For compare the influence of geometry ECAP tool on structure refining was used AlMn1Cu and AZ31 alloys were used three specially made tools ECAP, differing mainly in the construction design.Keywords: severe plastic deformation, ECAP method, hardness, microstructure Jednym ze sposobów bardziej efektywnego kształtowania plastycznego metali jest metoda dużych odkształceń plastycznych. Aktualnie do tego celu wykorzystywany jest proces SPD, w wyniku którego osiąga się wysokie wartości odkształcenia materiału z ultra drobnoziarnistą strukturą. Prowadzi to do wzrostu właściwości wytrzymałościowych, przy nieznacznym obniże-niu plastyczności. W artykule przedstawiono wyniki badań dwóch stopów -stop aluminium AlMn1Cu, który jest produkowany w formie blachy grubości 10 lub 15 mm z zastosowaniem w przemyśle maszynowym oraz stop magnezu AZ31, który po odlaniu jest wyciskany w temperaturze 400• C z pręta o średnicy 60 mm na średnicę 20 mm. Do eksperymentów użyto próbek o rozmiarach 10×10-40 mm z odchyleniem kanału narzędzia ECAP o 20• od kierunku poziomego oraz próbki o rozmiarach 15×15-60 mm z nową geometrią kanału narzędzia ECAP (część kanału w kształcie śruby) dla zwiększenia odkształcenia w poszczególnych przejściach próbki narzędziem ECAP. Uzyskane wyniki twardości oraz struktury, przy użyciu wyżej podanych geometrii narzędzia ECAP, były porównywane oddzielnie u obu stopów.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.