This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation.
This study aimed to investigate whether the differences in pain perception between patients with borderline personality disorder (BPD) and healthy subjects (HCs) can be explained by differences in the glutamate/GABA ratio in the posterior insula. In total, 29 BPD patients and 31 HCs were included in the statistical analysis. Mechanical pain sensitivity was experimentally assessed with pinprick stimuli between 32 and 512 mN on a numeric rating scale. The metabolites were measured in the right posterior insula using the MEshcher–GArwood Point-RESolved Spectroscopy sequence for single-voxel magnetic resonance spectroscopy (1H-MRS). The 256- and the 512-mN pinprick stimuli were perceived as significantly less painful by the BPD patient group compared with HCs. No differences were found between groups for the glutamate/GABA ratios. A positive correlation between the glutamate/GABA ratio and the pain intensity ratings to 256- and 512-mN pinpricks could be found in the combined and in the HC group. In the BPD patient group, the correlations between the glutamate/GABA ratio and the pain intensity ratings to 256- and 512-mN pinpricks did not reach significance. In conclusion, the study showed that individual differences in pain perception may in part be explained by the individual glutamate/GABA ratio in the posterior insula. However, this possible mechanism does not explain the differences in pain perception between BPD patients and HCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.