Efficiency of the polishing process is determined by the properties of abrasive grains, including its form parameter and orientation in the body of the grinding tool. It is possible to improve the operational characterizations of the grinding instruments, in particular – cutting discs, by ordering of the grain geometry, selection of the rational form and orientation of abrasive grains for specific processing conditions and parameters of the power load. For the solution of such problem the developed and patented method for production of grinding tools with the orientated abrasive grains is offered [1]. According to the specified method the cutting discs with radial and tangential orientation of abrasive grains are made. As a comparative standard, discs without orientation of abrasive grains are made also. Comparative tests by cutting according to the scheme of pressing of workpiece to a disc with a constant effort are carried out. It is established that orientation of abrasive grains significantly influences the operational characterizations of cutting discs. So, the cutting ability of cutting discs with radial orientation of abrasive grains is 15-17% higher during processing of various materials, than at standard tools. The grinding coefficient of cutting discs with tangential orientation of abrasive grains is 25-29% higher, than at usual discs with non-oriented grains. Results of an assessment of effective power of cutting in addition confirm that discs with the radial orientation of grains are working with the greatest intensity and at the same time with biggest wear. Further, on decrease, cutting discs with non-oriented grains follow. Instruments with tangential orientation of abrasive grains are characterized by the smallest cutting ability and the smallest wear. Such effect is caused by that the radial focused abrasive grains possess the greatest sizes of forward corners, and tangential focused grains possess the smallest sizes. It is established also that application of cutting discs with radial orientation of abrasive grains in comparison with ordinary tools allows to reduce temperature in a cutting zone by 20-30 °C and to reduce the size of zones of thermal influence.
The possibility and efficiency of the use of high-density polyethylene as a binding substance in grinding wheels for cutting-off, as well as for finish cylindrical grinding, is researched. It is determined that: - breaking mechanical strength of such circles ensures their safe operation at maximum operating speeds of 30–35 m/sec; - the use of high-density polyethylene as a binding substance in cutting wheels is not advisable, due to intensive wear and low cutting power of these tools; - wheels for finish cylindrical grinding on the basis of high-density polyethylene and hollow spherocorundum as abrasive grains in a number of key indicators (cutting power, roughness of machined surfaces) are highly competitive with grinding wheels on a bakelite bond or are comparable to them, and significantly exceed the latter in terms of wear resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.