The object of research is the fuel gas system of a gas turbine engine. The study of the use of secondary energy resources of the gas-pumping unit at the compressor station of the main pipeline has been carried out. The work of a gas turbine engine, including the work of the fuel gas system, is considered. The main drawback of the fuel gas system is revealed – ineffective use of excess gas pressure. An informational analysis of the options that eliminate the identified drawback is carried out. It is shown that in order to eliminate the disadvantage, it is advisable to use a turbo-expander at the compressor station to utilize the excess pressure of the fuel gas. It is also shown that the operation of a fuel gas turboexpander to drive an additional air compressor as part of a gas turbine engine is impractical. An expander-generator set with the generation of additional electricity at the compressor station is recommended for use. Modeling the operation of the utilization system made it possible to recommend constructive proposals for its improvement. A schematic diagram of a system for the complex utilization of excess pressure of fuel gas and heat of combustion products from the operation of a gas turbine engine is proposed. The system of complex utilization includes parts-generator unit, heat exchanger for cooling process gas and heat exchanger for firing gas. Regenerative heating of fuel gas up to 250 °С reduces energy consumption for heating it up to the ignition temperature. A model of a robot installation of the type GPU 16/56-1.44 (Ukraine) is carried out. It is determined that when a component engine of the J-59 (Ukraine) type with a shaft power of 16 MW operates, it is possible to additionally receive 102 kW of electricity and save 64 m3/h of fuel gas. It is revealed that the subcooling of the process gas does not play a significant role in reducing energy consumption during its transportation. It is recommended to use the process gas to heat the cold fuel gas stream downstream of the turboexpander to positive temperatures. The integrated utilization system is not a simple connection of an expander-generator set and two heat exchangers along the flow of the fuel gas. As a result of its operation, a significant reduction in the consumption of fuel gas and electricity is achieved. The disadvantages that hinder the implementation of a comprehensive disposal system are identified. This is the use of equipment for generating electricity at a compressor station. It is uncharacteristic for the operation of the station and requires additional qualifications in service. It is also required that the characteristics of industrial expander-generator sets correspond to the fuel gas consumption of a gas turbine engine.
The object of research is a data model that characterizes the pumping units of main oil pipelines. The paper considers the creation of pumps database and their characteristics as a component of software systems designed to search for sources of energy saving in pipeline transportation of oil and oil products. An overview of existing programs for calculating the joint operation of an oil pumping station and a pipeline is given. It is shown that most programs are inaccessible for analyzing the applied data storage technologies, or involve manual input of entry data without using databases. Comparative analysis of spreadsheets and relational databases is performed. It is shown that relational databases better meet the requirements of data convenience, availability, scalability, and performance. A physical model of a relational database is presented. The parent and child entities have been established, which make it possible to fully reflect all information about the pumping unit, namely:-coefficients of hydraulic characteristics depending on the diameter of the impeller rotor;-characteristics depending only on the pump make;-classification of the pump by design or purpose. Relationship types and referential integrity rules are defined between entities when deleting or updating data. For data management, the SQLite system is proposed, which provides data manipulation in the SQL query language and does not require the development of additional software. The analysis of possible ways of organizing multilingualism using a database is carried out. The text of the SQL query is proposed, which allows to select the pump with its characteristics by the pump make and impeller diameter. A database structure is proposed that allows storing information about equipment for oil pipelines for various purposes, which makes it possible for automated calculations of complex technological processes. The pumping unit database is an open source project that is posted on the public web service GitHub.
The influence of the ambient air temperature on changes in the parameters and thermophysical characteristics of the gas pumped through the underground pipeline was investigated. This was done because there are no scientifically sound recommendations for the optimal gas temperature after coolers at the compressor station. The presence of the site of inversion of heat exchange between gas and soil – a change in the direction of heat exchange along the length of the gas pipeline was revealed. It was proved that the air temperature above the soil surface should be substituted into the formula for calculating the change in gas temperature along the length of the pipeline between compressor stations. This made it possible to determine quantitative changes in the thermophysical and hydraulic characteristics of the gas along the pipe length, in particular, the change in density, viscosity, heat capacity, flow regime. It is shown that the change in air temperature during the year leads to a change in the gas pressure at the end of the gas pipeline section up to 0.15 MPa. A change in air temperature by 10 °С leads to a change in gas temperature by approximately 5 °С. Analytical studies made it possible to develop practical recommendations for the power-saving operation of air coolers at compressor stations. It was determined that the optimum gas temperature at the cooler outlet will be the temperature at which the heat exchange inversion point along the length of the gas pipeline coincides with the location of the subsequent station. It is shown how to control gas cooling in air coolers. In particular, by shutting down one of several operating devices and changing the speed of the fan drive. The developed recommendations will make it possible to quickly regulate the temperature mode of the underground gas pipeline operation at optimal power consumption for the operation of the gas cooling system after gas compression
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.