Мета: Дослідження гідродинамічних характеристик крила в нестаціонарному потоці. Методи дослідження: Експериментальне вивчення гідродинамічного навантаження, котре діє на крило подовженням 1.5, яке коливається в потоці по гармонійному закону щодо поперечної осі в діапазоні частот 0.2-2.5 Гц. Швидкість потоку в гідродинамічної трубі становила 0.2-1.5 м / с. Результати: Миттєві значення коефіцієнтів підйомної сили і опору / тяги в залежності від кута тангажа при нестаціонарному обтіканні залежать від числа Струхаля. Обговорення: Зі збільшенням частоти коливань коефіцієнти компонент гідродинамічної сили, що діє на крило, зростають і можуть істотно перевищувати параметри для стаціонарної продувки.
The results of physical and numerical modeling of a ventilated air cavity behind a streamlined body are presented. The results of laboratory experiments to determine the amount of gas flowing from the ventilated cavity are presented. It is formed behind the cavitator depending on a number of geometric and dynamic parameters. Numerical simulation of non-stationary 3D two-phase flow was performed on the basis of open source software OpenFOAM. The influence of gas blowing parameters on the formation of an air cavity, size, shape and stability has been investigated. Good qualitative agreement with experimental data was obtained. It is shown that the thickness of the ventilated cavity is determined by the diameter of the cavitator regardless of the diameter of the blow hole, and the increase in velocity or gas flow rate has a positive effect on the length and stability of the formed cavity.
The paper considers the formation of a ventilated cavity in a flow of water behind a streamlined body. Numerical modeling of the two-phase flow is based on the Volume of Fluid (VOF) method. The system of equations for the water-air mixture consists of the Navier-Stokes equation, continuity equation, energy conservation equation, and diffusion equation, and the equations of state (ideal gas equation, Boussinesq approximation). This system is closed by the Smagorinsky model of turbulence (the model of large eddies). The geometry was designed in accordance with the experimental cavitator using the SALOME open package. The calculation mesh was built by the method of cutting out the geometry from the calculation domain and step-by-step densification near the streamlined body using the snappyHexMesh utility. The results of the simulation of the formation of the air cavity behind the disk cavitator are presented. The influence of the parameters such as air injection velocity, water flow velocity on the formation of the air cavity, its size and stability is illustrated. An approximation dependence is proposed that describes the main parameters of the system. Numerical simulation of the non-stationary problem of the two-phase flow of two compressible fluids without a phase change was done using the compressibleInterFoam numerical model of the open-source package OpenFOAM. The obtained results were analyzed and compared with experimental data. The perspectives of subsequent studies related to the development of a three-phase numerical model using open source packages of programs for accounting for natural cavitation are ilustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.