Evidence for an interaction between the quantum dot exciton fine structure states F = +/-1 is obtained by measuring the dynamics of transitions among those states, exciton spin relaxation or flipping. An ultrafast transient grating experiment based on a crossed-linear polarization grating is reported. By using the quantum dot selection rules for absorption of circularly polarized light, it is demonstrated that it is possible to detect transitions between nominally degenerate fine structure states, even in a rotationally isotropic system. The results for colloidal CdSe quantum dots reveal a strong size dependence for the exciton spin relaxation rate from one bright exciton state (F = +/-1) to the other in CdSe colloidal quantum dots at 293 K, on a time scale ranging from femtoseconds to picoseconds, depending on the quantum dot size. The results are consistent with an interaction between those states attributed to a long-range contribution to the electron-hole exchange interaction.
PACS 78.40.+y, 78.47.+p, 78.55.Et, 78.67.Bf The photoluminescence efficiencies and excitation relaxation dynamics in CdSe nanocrystals (NC) passivated with tri-n-octylphosphine oxide and embedded in two different polymer matrixes, poly(styrene) (PS) and poly(butylmethacrylate) (PBMA), are compared. Femtosecond pump-probe absorption spectroscopy is used to clarify the influence of various transparent polymer matrixes on the electronic properties and excitation relaxation dynamics of quantum confined CdSe semiconductor nanocrystals of 5.0 nm diameter. The fluorescence intensity is reported to be ~10 times higher for the NC-PS sample compared to the NC-PBMA film. This striking difference in fluorescence yield is shown to be related to markedly different rates of nonradiative excitation relaxation in the two samples, and is attributed directly to a role played by the polymer host.
In order to evaluate carrier densities created by 1.6 MeV protons and to trace radiation damage of the 2.5 μm thick GaN epi-layers grown by metalorganic chemical vapor deposition technique, a correlation between the photoconductivity transients and the steady-state photoluminescence spectra have been examined. Comparison of luminescence spectra induced by proton beam and by laser pulse enabled us to evaluate the efficiency of a single proton generation being of 1 × 107 cm−3 per 1.6 MeV proton and 40 carrier pairs per micrometer of layer depth. This result indicates that GaN layers can be an efficient material for detection of particle flows. It has been demonstrated that GaN material can also be a rather efficient scintillating material within several wavelength ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.