Theranostic nanoagents targeted for personalized medicine provide a unified platform for therapeutics and diagnostics. To be able to discretely control each individually, allows for safer, more precise, and truly multifunctional theranostics. Rare earth doped nanoparticles can be rationally tailored to best match this condition with the aid of core/shell engineering. In such nanoparticles, the light‐mediated theranostic approach is functionally decoupled—therapeutics or diagnostics are prompted on‐demand, by wavelength‐specific excitation. These decoupled rare earth nanoparticles (dNPs) operate entirely under near‐infrared (NIR) excitation, for minimized light interference with the target and extended tissue depth action. Under heating‐free 806 nm irradiation, dNPs behave solely as high‐contrast NIR‐to‐NIR optical markers and nanothermometers, visualizing and probing the area of interest without prompting the therapeutic effect beforehand. On the contrary, 980 nm NIR irradiation is upconverted by the dNPs to UV/visible light, which triggers secondary photochemical processes, e.g., generation of reactive oxygen species by photosensitizers coupled to the dNPs, causing damage to cancer cells. Additionally, integration of NIR nanothermometry helps to control the temperature in the vicinity of the dNPs avoiding possible overheating and quenching of upconversion (UC) emission, harnessed for photodynamic therapy. Overall, a new direction is outlined in the development of state‐of‐the‐art rare earth based theranostic nanoplatforms.
Background:The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods:The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker ® . Results:The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5-8 µm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison with incubation as well as the limited transfer of quantum dots from vesicles into the cytosol and vice versa support the endocytotic origin of the natural uptake of quantum dots. Quantum dots with proteins adsorbed from the culture medium had a different fate in the final stage of accumulation from that of the protein-free quantum dots, implying different internalization pathways.
The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3–24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.