Various approaches to extend the finite element methods to non-traditional elements pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry anal ysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex el ements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.
Abstract. We present the non-conforming Virtual Element Method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable non-polynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functions is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two-and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the non-conforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.
We study the dynamics and interaction of two swimming bacteria, modeled by self-propelled dumbbell-type structures. We focus on alignment dynamics of a coplanar pair of elongated swimmers, which propel themselves either by "pushing" or "pulling" both in three- and quasi-two-dimensional geometries of space. We derive asymptotic expressions for the dynamics of the pair, which complemented by numerical experiments, indicate that the tendency of bacteria to swim in or swim off depends strongly on the position of the propulsion force. In particular, we observe that positioning of the effective propulsion force inside the dumbbell results in qualitative agreement with the dynamics observed in experiments, such as mutual alignment of converging bacteria.
We present an explicit second order staggered finite difference (FD) discretization scheme for forward simulation of natural gas transport in pipeline networks. By construction, this discretization approach guarantees that the conservation of mass condition is satisfied exactly. The mathematical model is formulated in terms of density, pressure, and mass flux variables, and as a result permits the use of a general equation of state to define the relation between the gas density and pressure for a given temperature. In a single pipe, the model represents the dynamics of the density by propagation of a non-linear wave according to a variable wave speed. We derive compatibility conditions for linking domain boundary values to enable efficient, explicit simulation of gas flows propagating through a network with pressure changes created by gas compressors. We compare Kiuchi's implicit method and an explicit operator splitting method with our staggered grid method, and perform numerical experiments to validate the convergence order of the new method. In addition, we perform several computations to investigate the influence of non-ideal equation of state models and temperature effects into pipeline simulations with boundary conditions over various time and space scales. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.