In diabetes mellitus, β cell destruction is largely silent and can be detected only after significant loss of insulin secretion capacity. We have developed a method for detecting β cell death in vivo by amplifying and measuring the proportion of insulin 1 DNA from β cells in the serum. By using primers that are specific for DNA methylation patterns in β cells, we have detected circulating copies of β cell-derived demethylated DNA in serum of mice by quantitative PCR. Accordingly, we have identified a relative increase of β cell-derived DNA after induction of diabetes with streptozotocin and during development of diabetes in nonobese diabetic mice. We have extended the use of this assay to measure β cell-derived insulin DNA in human tissues and serum. We found increased levels of demethylated insulin DNA in subjects with new-onset type 1 diabetes compared with age-matched control subjects. Our method provides a noninvasive approach for detecting β cell death in vivo that may be used to track the progression of diabetes and guide its treatment.epigenetics | autoimmunity | biomarker
Immunodeficient mice bearing components of a human immune system present a novel approach for studying human immune responses. We investigated the number, phenotype, developmental kinetics and function of developing human immune cells following transfer of CD34+ hematopoietic stem cell (HSC) preparations, originating from second trimester human fetal liver (HFL), umbilical cord blood (UCB), or granulocyte colony-stimulating factor-mobilized adult blood (G-CSF-AB) delivered via intrahepatic injection into sublethally irradiated neonatal NOD-scid/γc −/− , Balb/cRag1 −/− γc −/− , and C.B-17-scid/bg mice. HFL and UCB HSC provided the greatest number and breadth of developing cells. NOD-scid/γc −/− and Balb/c-Rag1 −/− γc −/− harbored human B and dendritic cells as well as human platelets in peripheral blood, whereas NOD-scid/γc −/− mice harbored higher levels of human T cells. NOD-scid/γc −/− mice engrafted with HFL CD34+ HSC demonstrated human immunological competence evidenced by white pulp expansion and increases in total human immunoglobulin following immunization with T-dependent antigens, and delayed type hypersensitivity-infiltrating leukocytes in response to antigenic challenge. In conclusion, we describe an encouraging base system for studying human hematopoietic lineage development and function utilizing human HFL or UCB HSC-engrafted NOD-scid/γc −/− mice that is well suited for future studies toward the development of a fully competent humanized mouse model.
Anti-CD3 mAb can modulate graft rejection and attenuate autoimmune diseases but their mechanism(s) of action remain unclear. CD8 1 T cells with regulatory function are induced in vitro by Teplizumab, a humanized anti-CD3 antibody and inhibit responses of autologous and allogeneic T cells. They inhibit CD4 1 T-cell proliferation by mechanisms involving TNF and CCL4, and by blocking target cell entry into G2/M phase of cell cycle but neither kill them, nor compete for IL-2. CD8 1 Treg can be isolated from peripheral blood following treatment of patients with Type 1 diabetes with Teplizumab, but not from untreated patients. The induction of CD8 1 Treg by anti-CD3 mAb requires TNF and signaling through the NF-jB cascade. The CD8 1 Treg express CD25, glucocorticoid-induced TNF receptor family, CTLA-4, Foxp3, and TNFR2, and the combined expression of TNFR2 and CD25 identifies a potent subpopulation of CD8 1 Treg. These studies have identified a novel mechanism of immune regulation by anti-CD3 mAb and markers that may be used to track inducible CD8 1 Treg in settings such as chronic inflammation or immune therapy.
Inflammatory cytokines are involved in autoimmune diabetes: among the most prominent is interleukin (IL)-1β. We postulated that blockade of IL-1β would modulate the effects of anti-CD3 monoclonal antibody (mAb) in treating diabetes in NOD mice. To test this, we treated hyperglycemic NOD mice with F(ab′)2 fragments of anti-CD3 mAb with or without IL-1 receptor antagonist (IL-1RA), or anti–IL-1β mAb. We studied the reversal of diabetes and effects of treatment on the immune system. Mice that received a combination of anti-CD3 mAb with IL-1RA showed a more rapid rate of remission of diabetes than mice treated with anti-CD3 mAb or IL-1RA alone. Combination-treated mice had increased IL-5, IL-4, and interferon (IFN)-γ levels in circulation. There were reduced pathogenic NOD-relevant V7 peptide-V7+ T cells in the pancreatic lymph nodes. Their splenocytes secreted more IL-10, had increased arginase expression in macrophages and dendritic cells, and had delayed adoptive transfer of diabetes. After 1 month, there were increased concentrations of IgG1 isotype antibodies and reduced intrapancreatic expression of IFN-γ, IL-6, and IL-17 despite normal splenocyte cytokine secretion. These studies indicate that the combination of anti-CD3 mAb with IL-1RA is synergistic in reversal of diabetes through a combination of mechanisms. The combination causes persistent remission from islet inflammation.
A peptide of the human 60-kDa heat-shock protein (hsp60), designated p277, was found to be useful as a therapeutic agent to arrest the autoimmune process responsible for diabetes in nonobese diabetic (NOD) mice. The effectiveness of peptide treatment was associated with the induction of peptide-specific antibodies of the IgG1 but not of the IgG2a isotype, suggesting the possibility that a Th2-type response may have been induced. We now report that the effectiveness of p277 treatment is associated with the transient activation of anti-p277 splenic T-cells that produce the Th2 cytokines interleukin-4 (IL-4) and IL-10. The Th2 response to p277 was associated with reduced Th1-type autoimmunity to hsp60 and to two other target antigens associated with diabetes: GAD and insulin. The Th2 shift appeared to be relatively specific; spontaneous T-cell reactivity to a bacterial antigen peptide remained in the Th1 mode in the p277-treated mice. Moreover, treatment with the bacterial peptide did not induce a change in cytokine profile, and it did not affect progression of the disease. Thus, effective peptide treatment of the diabetogenic process associated with the induction of antibodies may be explained by selective and transient activation of Th2 autoimmune reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.